Join us at FabCon Atlanta from March 16 - 20, 2026, for the ultimate Fabric, Power BI, AI and SQL community-led event. Save $200 with code FABCOMM.
Register now!Vote for your favorite vizzies from the Power BI Dataviz World Championship submissions. Vote now!
Is there a way to change a list of paired column names and types into a table type? Or maybe way to manipulate types?
let
my_list = { //ideally, the types would be *actual* types, not text
{"UNIQUE_ID", "Number.Type"},
{"NAME", "Text.Type"},
{"START_DATE", "Date.Type"}
},
my_goal = //I want to transform my_list into this:
type table[
UNIQUE_ID = Number.Type,
NAME = Text.Type,
START_DATE = Date.Type
],
//But isn't there a better way than this?
#"My List As Table Type" = Expression.Evaluate(
"type table[#(lf)" & Text.Combine(
List.Transform(
my_list,
each "#(tab)"& _{0} &"="& _{1}
),
",#(lf)"
)&"#(lf)]",
#shared
)
in
#table(
#"My List As Table Type",
{
{1, "Andy", #date(2010,03,25)},
{2, "Sami", #date(2008,06,09)},
{3, "Max", #date(2005,11,03)}
}
)
Solved! Go to Solution.
Thank you!
I'm sorry I wasn't clear on this point, but I specifically needed to get the table type so I could re-use it in later steps. I figured out a method that doesn't use Expression.Evaluate by using List.Accumulate to generate an empty table with typed fields, and wrapping that in Value.Type:
let
my_list = {
{"UNIQUE_ID", Number.Type},
{"NAME", Text.Type},
{"START_DATE", Date.Type}
},
#"My List As Table Type" = Value.Type(
List.Accumulate(
my_list,
#table({},{}), //seed with empty table
(return_table, list_item)=>Table.AddColumn(
return_table,
list_item{0},
each null, //no data, just headers
list_item{1}
)
)
)
in
#table(
#"My List As Table Type",
{
{1, "Andy", #date(2010,03,25)},
{2, "Sami", #date(2008,06,09)},
{3, "Max", #date(2005,11,03)}
}
)
If they are actual types, then Table.TransformColumnTypes does a nice job.
let
my_list =
{
{"UNIQUE_ID", Number.Type},
{"NAME", Text.Type},
{"START_DATE", Date.Type}
},
T1 = #table(
List.Transform(my_list, each _{0}),
{
{1, "Andy", #date(2010,03,25)},
{2, "Sami", #date(2008,06,09)},
{3, "Max", #date(2005,11,03)}
}
)
in
Table.TransformColumnTypes(T1, my_list)
If they are text, then you can transform to types before using them.
let
my_list =
{
{"UNIQUE_ID", "Number.Type"},
{"NAME", "Text.Type"},
{"START_DATE", "Date.Type"}
},
my_types = List.Transform(
my_list, each {_{0}, Expression.Evaluate(_{1}, #shared)}
),
T1 = #table(
List.Transform(my_list, each _{0}),
{
{1, "Andy", #date(2010,03,25)},
{2, "Sami", #date(2008,06,09)},
{3, "Max", #date(2005,11,03)}
}
)
in
Table.TransformColumnTypes(T1, my_types)
Thank you!
I'm sorry I wasn't clear on this point, but I specifically needed to get the table type so I could re-use it in later steps. I figured out a method that doesn't use Expression.Evaluate by using List.Accumulate to generate an empty table with typed fields, and wrapping that in Value.Type:
let
my_list = {
{"UNIQUE_ID", Number.Type},
{"NAME", Text.Type},
{"START_DATE", Date.Type}
},
#"My List As Table Type" = Value.Type(
List.Accumulate(
my_list,
#table({},{}), //seed with empty table
(return_table, list_item)=>Table.AddColumn(
return_table,
list_item{0},
each null, //no data, just headers
list_item{1}
)
)
)
in
#table(
#"My List As Table Type",
{
{1, "Andy", #date(2010,03,25)},
{2, "Sami", #date(2008,06,09)},
{3, "Max", #date(2005,11,03)}
}
)
I still think Table.TransformColumnTypes is useful.
let
my_list =
{
{"UNIQUE_ID", Number.Type},
{"NAME", Text.Type},
{"START_DATE", Date.Type}
},
my_cols = List.Transform(my_list, each _{0}),
my_table_type = Value.Type(
Table.TransformColumnTypes(#table(my_cols,{}), my_list)
),
T1 = #table(
my_table_type,
{
{1, "Andy", #date(2010,03,25)},
{2, "Sami", #date(2008,06,09)},
{3, "Max", #date(2005,11,03)}
}
)
in
T1
Vote for your favorite vizzies from the Power BI World Championship submissions!
If you love stickers, then you will definitely want to check out our Community Sticker Challenge!
Check out the January 2026 Power BI update to learn about new features.
| User | Count |
|---|---|
| 11 | |
| 9 | |
| 8 | |
| 7 | |
| 6 |