The ultimate Microsoft Fabric, Power BI, Azure AI, and SQL learning event: Join us in Stockholm, September 24-27, 2024.
Save €200 with code MSCUST on top of early bird pricing!
Find everything you need to get certified on Fabric—skills challenges, live sessions, exam prep, role guidance, and more. Get started
Hi I have these kind of data which i extract from the raw data set. I need to furthure extract it with respect to few columns
As you can see the above two mentioned columns for every "Eutrancells" unique value their is 0 to 23 "hour" row data for every "Date". I need to calculate the Max value of "RCC User" columns between the range of 0 to 24 hour for every "date" row for each Eutracells and only give the max value of "RRC user" column fo unique "EUtracells" and for each "date" value. Please help
Solved! Go to Solution.
Ok, but keep in mind that for L_JCL014_I with date 17.3.2024 you have 2 rows with same RRC_USERS max value!
let
Source = Csv.Document(File.Contents("c:\Address\Hourly Table 20240404 192948.csv"),[Delimiter=",", Columns=55, Encoding=1250, QuoteStyle=QuoteStyle.None]),
PromotedHeaders = Table.PromoteHeaders(Source, [PromoteAllScalars=true]),
TransformHeaders = Table.TransformColumnNames(PromotedHeaders, each Text.Trim(Text.BetweenDelimiters(_, "Hourly Table[", "]"))),
ChangedType = Table.TransformColumns(TransformHeaders,{{"Date New", each Date.From(DateTime.From(_, "en-US")), type date}, {"RRC_USERS", each Number.From(_, "en-US"), type number}}),
GroupedRows = Table.Group(ChangedType, {"EutranCells", "Date New"}, {{"Max RRC_USERS Row", each Table.SelectRows(_, (x)=> x[RRC_USERS] = List.Max([RRC_USERS])), type table}}),
CombinedMaxRRC_USERS_Rows = Table.Combine(GroupedRows[Max RRC_USERS Row])
in
CombinedMaxRRC_USERS_Rows
Hi @dufoq3 thanks for your all kind of help. I am kind stuck with new thing. Currently I have to a situation of data in which i have not just only max but the 5 top value of max "VOICE_TRAFFIC_3G_Erl" in 7 days of data with respect to utrancel and date.
Let me explain you in detail.
1. We have tables of 7 days hourly base data. For each day we have separate csv file.
2. The query we require is we took data from all 7 days or any days provided tables and it give us table with respect to top 5 values of "VOICE_TRAFFIC_3G_Erl". Means no matter how many days data we provide it only took top 5 value data of "VOICE_TRAFFIC_3G_Erl" . Means it check all the values of each date with hour respect and give us back the max top 5 value of all the data provided for 7 days. And all other relevant column included with it.
3. Currently I am attaching 5 days hourly data but it is not an issue as the query will automatically select the top 5 values from all the data. So whether it will be 5 days or any number of days it just has to select 5 top value "VOICE_TRAFFIC_3G_Erl" in all the data with respect to unique "Utrancell" column. Means the last table have for every Utrancell we have 5 entries of data which is the top 5 values of "VOICE_TRAFFIC_3G_Erl" and all other relevant columns included.
Link of Tables
Hi, try this. Change folder address.
let
Source = Folder.Files("c:\Downloads\PowerQueryForum\Sohaib\CS BH Tables\"),
CsvToTable = Table.TransformColumns(Source, {{"Content", each Table.PromoteHeaders(Csv.Document(_)), type table}}),
Combined = Table.Combine(CsvToTable[Content]),
ChangedType = Table.TransformColumns(Combined, {{"Date New", each Date.From(Text.BeforeDelimiter(_, " ")), type date}, {"VOICE_TRAFFIC_3G_Erl", each Number.From(_, "en-US"), type number}}),
GroupedRows = Table.Group(ChangedType, {"Utrancell"}, {{"Max5", each Table.MaxN(_, {"VOICE_TRAFFIC_3G_Erl"}, 5), type table}}),
CombinedMax5 = Table.Combine(GroupedRows[Max5])
in
CombinedMax5
need two result one for weekly and one monthly
Try this:
Weekly:
let
Source = Folder.Files("c:\Downloads\PowerQueryForum\Sohaib\"),
FilteredHiddenFiles = Table.SelectRows(Source, each [Attributes]?[Hidden]? <> true),
FilteredCsv = Table.SelectRows(FilteredHiddenFiles, each [Extension] = ".csv"),
BinaryToTable = Table.TransformColumns(FilteredCsv, {{"Content", each Table.PromoteHeaders(Csv.Document(_,[Delimiter=",", Encoding=1250, QuoteStyle=QuoteStyle.None])), type table}}),
CombinedTables = Table.Combine(BinaryToTable[Content]),
TransformHeaders = Table.TransformColumnNames(CombinedTables, each Text.Trim(Text.BetweenDelimiters(_, "Hourly Table[", "]"))),
ChangedType = Table.TransformColumns(TransformHeaders,{{"Date New", each Date.From(DateTime.From(_, "en-US")), type date}, {"RRC_USERS", each Number.From(_, "en-US"), type number}}),
Ad_YearWeek = Table.AddColumn(ChangedType, "YearWeek", each Date.Year([Date New])*100 + Date.WeekOfYear([Date New]), Int64.Type),
GroupedRows = Table.Group(Ad_YearWeek, {"EutranCells", "YearWeek"}, {{"Max RRC_USERS Row", each Table.SelectRows(_, (x)=> x[RRC_USERS] = List.Max([RRC_USERS])), type table}}),
CombinedMaxRRC_USERS_Rows = Table.Combine(GroupedRows[Max RRC_USERS Row])
in
CombinedMaxRRC_USERS_Rows
Monthly:
let
Source = Folder.Files("c:\Downloads\PowerQueryForum\Sohaib\"),
FilteredHiddenFiles = Table.SelectRows(Source, each [Attributes]?[Hidden]? <> true),
FilteredCsv = Table.SelectRows(FilteredHiddenFiles, each [Extension] = ".csv"),
BinaryToTable = Table.TransformColumns(FilteredCsv, {{"Content", each Table.PromoteHeaders(Csv.Document(_,[Delimiter=",", Encoding=1250, QuoteStyle=QuoteStyle.None])), type table}}),
CombinedTables = Table.Combine(BinaryToTable[Content]),
TransformHeaders = Table.TransformColumnNames(CombinedTables, each Text.Trim(Text.BetweenDelimiters(_, "Hourly Table[", "]"))),
ChangedType = Table.TransformColumns(TransformHeaders,{{"Date New", each Date.From(DateTime.From(_, "en-US")), type date}, {"RRC_USERS", each Number.From(_, "en-US"), type number}}),
Ad_YearMonth = Table.AddColumn(ChangedType, "YearMonth", each Date.Year([Date New])*100 + Date.Month([Date New]), Int64.Type),
GroupedRows = Table.Group(Ad_YearMonth, {"EutranCells", "YearMonth"}, {{"Max RRC_USERS Row", each Table.SelectRows(_, (x)=> x[RRC_USERS] = List.Max([RRC_USERS])), type table}}),
CombinedMaxRRC_USERS_Rows = Table.Combine(GroupedRows[Max RRC_USERS Row])
in
CombinedMaxRRC_USERS_Rows
thanks. But I also sort out this as well. In this way I learned a alot.
Yes, but the data set i provided you need to extract their all other column value of the same row of maxium rrc column
Ok, but keep in mind that for L_JCL014_I with date 17.3.2024 you have 2 rows with same RRC_USERS max value!
let
Source = Csv.Document(File.Contents("c:\Address\Hourly Table 20240404 192948.csv"),[Delimiter=",", Columns=55, Encoding=1250, QuoteStyle=QuoteStyle.None]),
PromotedHeaders = Table.PromoteHeaders(Source, [PromoteAllScalars=true]),
TransformHeaders = Table.TransformColumnNames(PromotedHeaders, each Text.Trim(Text.BetweenDelimiters(_, "Hourly Table[", "]"))),
ChangedType = Table.TransformColumns(TransformHeaders,{{"Date New", each Date.From(DateTime.From(_, "en-US")), type date}, {"RRC_USERS", each Number.From(_, "en-US"), type number}}),
GroupedRows = Table.Group(ChangedType, {"EutranCells", "Date New"}, {{"Max RRC_USERS Row", each Table.SelectRows(_, (x)=> x[RRC_USERS] = List.Max([RRC_USERS])), type table}}),
CombinedMaxRRC_USERS_Rows = Table.Combine(GroupedRows[Max RRC_USERS Row])
in
CombinedMaxRRC_USERS_Rows
Hey dufoq3 how are you? I need to understand if entries appaer or the entries have same value like 0 we have multiple entries in the result how to avoid multiple entries if by chance max rrc users column have same value or we have 0 value, Because at 0 value there are multiple entries appear. I need to pick only one randomly if the value is for 2 entries have same result or in case 0 just 1 random entry should be given in answer
Hi, if you want to pick only 1 row, you can add this in GroupedRows step:
= Table.Group(ChangedType, {"EutranCells", "Date New"}, {{"Max RRC_USERS Row", each Table.FirstN(Table.SelectRows(_, (x)=> x[RRC_USERS] = List.Max([RRC_USERS])), 1), type table}})
Ok 1 last thing if i want to select source as a folder not as CSV or Xlxs file what whould be the change in code
let
Source = Folder.Files("C:\Users\dell\Documents\Working\Data Validation\KPI Calculations 28-2-2024\KPI Calculation new method working\Data For Busy Hour Tables"),
#"Filtered Hidden Files1" = Table.SelectRows(Source, each [Attributes]?[Hidden]? <> true),
#"Invoke Custom Function1" = Table.AddColumn(#"Filtered Hidden Files1", "Transform File (3)", each #"Transform File (3)"([Content])),
#"Renamed Columns1" = Table.RenameColumns(#"Invoke Custom Function1", {"Name", "Source.Name"}),
#"Removed Other Columns1" = Table.SelectColumns(#"Renamed Columns1", {"Source.Name", "Transform File (3)"}),
#"Expanded Table Column1" = Table.ExpandTableColumn(#"Removed Other Columns1", "Transform File (3)", Table.ColumnNames(#"Transform File (3)"(#"Sample File (3)"))),
#"Changed Type" = Table.TransformColumnTypes(#"Expanded Table Column1",{{"Source.Name", type text}, {"Hourly Table[EutranCells]", type text}, {"Hourly Table[Date New]", type datetime}, {"Hourly Table[EnodeB new]", type text}, {"Hourly Table[Hour]", Int64.Type}, {"Hourly Table[Begin Time New]", type datetime}, {"Hourly Table[End Time New]", type datetime}, {"Hourly Table[Granularity]", type text}, {"Hourly Table[Availability_4G]", type number}, {"Hourly Table[DL_THP_CELL_4G_Mbps]", type number}, {"Hourly Table[DL_PRB_Usage]", type number}, {"Hourly Table[DL_THP_USER_4G_Mbps]", type number}, {"Hourly Table[DL_THP_USER_QCI1_4G_Mbps]", Int64.Type}, {"Hourly Table[DL_THP_USER_QCI2_4G_Mbps]", Int64.Type}, {"Hourly Table[DL_THP_USER_QCI3_4G_Mbps]", Int64.Type}, {"Hourly Table[DL_THP_USER_QCI4_4G_Mbps]", Int64.Type}, {"Hourly Table[DL_THP_USER_QCI5_4G_Mbps]", Int64.Type}, {"Hourly Table[DL_THP_USER_QCI6_4G_Mbps]", type number}, {"Hourly Table[DL_THP_USER_QCI7_4G_Mbps]", type number}, {"Hourly Table[DL_THP_USER_QCI8_4G_Mbps]", Int64.Type}, {"Hourly Table[DL_THP_USER_QCI9_4G_Mbps]", Int64.Type}, {"Hourly Table[DL_VOL_4G_GB]", type number}, {"Hourly Table[ERAB Attempt]", Int64.Type}, {"Hourly Table[ERAB_DCR]", Int64.Type}, {"Hourly Table[ERAB_Drops]", Int64.Type}, {"Hourly Table[ERAB_SSR]", Int64.Type}, {"Hourly Table[ERAB_Failures]", Int64.Type}, {"Hourly Table[RRC_USERS]", type number}, {"Hourly Table[UL_THP_CELL_4G_Mbps]", type number}, {"Hourly Table[UL_PRB_Usage]", type number}, {"Hourly Table[UL_THP_USER_4G_Mbps]", type number}, {"Hourly Table[DL_Spectral_Eff]", type number}, {"Hourly Table[Avg_Agg_CQI]", type number}, {"Hourly Table[UL_VOL_4G_GB]", type number}, {"Hourly Table[VOLTE_SESSION_TIME_minutes]", Int64.Type}, {"Hourly Table[VOLTE_DCR]", Int64.Type}, {"Hourly Table[VOLTE_SSR]", Int64.Type}, {"Hourly Table[VoLTE_INTEGRITY_SESSION]", Int64.Type}, {"Hourly Table[VoLTE_INTEGRITY_UE]", Int64.Type}, {"Hourly Table[VOLTE_Erl]", Int64.Type}, {"Hourly Table[VOLTE_USERS]", type number}, {"Hourly Table[Reported Rank 1 %]", type any}, {"Hourly Table[Reported Rank 2 %]", type any}, {"Hourly Table[Reported Rank 3 %]", type any}, {"Hourly Table[Reported Rank 4 %]", type any}, {"Hourly Table[UL RSSI PUSCH New]", type any}, {"Hourly Table[UL RSSI PUCCH]", type any}, {"Hourly Table[QPSK Samples (%)]", type any}, {"Hourly Table[16 QAM Samples (%)]", type any}, {"Hourly Table[64QAM Samples(%)]", type any}, {"Hourly Table[RLC DL BLER]", type any}, {"Hourly Table[RLC UL BLER]", type any}, {"Hourly Table[UL SINR PUCCH]", type any}, {"Hourly Table[UL SINR PUSCH]", type any}, {"Hourly Table[PDCCH CFI Utilization]", type any}, {"Hourly Table[CCE Aggregation Level]", type any}})
in
#"Changed Type"
let Source = Folder.Files("C:\Users\dell\Documents\Working\Data Validation\KPI Calculations 28-2-2024\KPI Calculation new method working\Data For Busy Hour Tables"), #"Filtered Hidden Files1" = Table.SelectRows(Source, each [Attributes]?[Hidden]? <> true), #"Invoke Custom Function1" = Table.AddColumn(#"Filtered Hidden Files1", "Transform File (3)", each #"Transform File (3)"([Content])), #"Renamed Columns1" = Table.RenameColumns(#"Invoke Custom Function1", {"Name", "Source.Name"}), #"Removed Other Columns1" = Table.SelectColumns(#"Renamed Columns1", {"Source.Name", "Transform File (3)"}), #"Expanded Table Column1" = Table.ExpandTableColumn(#"Removed Other Columns1", "Transform File (3)", Table.ColumnNames(#"Transform File (3)"(#"Sample File (3)"))), #"Changed Type" = Table.TransformColumnTypes(#"Expanded Table Column1",{{"Source.Name", type text}, {"Hourly Table[EutranCells]", type text}, {"Hourly Table[Date New]", type datetime}, {"Hourly Table[EnodeB new]", type text}, {"Hourly Table[Hour]", Int64.Type}, {"Hourly Table[Begin Time New]", type datetime}, {"Hourly Table[End Time New]", type datetime}, {"Hourly Table[Granularity]", type text}, {"Hourly Table[Availability_4G]", type number}, {"Hourly Table[DL_THP_CELL_4G_Mbps]", type number}, {"Hourly Table[DL_PRB_Usage]", type number}, {"Hourly Table[DL_THP_USER_4G_Mbps]", type number}, {"Hourly Table[DL_THP_USER_QCI1_4G_Mbps]", Int64.Type}, {"Hourly Table[DL_THP_USER_QCI2_4G_Mbps]", Int64.Type}, {"Hourly Table[DL_THP_USER_QCI3_4G_Mbps]", Int64.Type}, {"Hourly Table[DL_THP_USER_QCI4_4G_Mbps]", Int64.Type}, {"Hourly Table[DL_THP_USER_QCI5_4G_Mbps]", Int64.Type}, {"Hourly Table[DL_THP_USER_QCI6_4G_Mbps]", type number}, {"Hourly Table[DL_THP_USER_QCI7_4G_Mbps]", type number}, {"Hourly Table[DL_THP_USER_QCI8_4G_Mbps]", Int64.Type}, {"Hourly Table[DL_THP_USER_QCI9_4G_Mbps]", Int64.Type}, {"Hourly Table[DL_VOL_4G_GB]", type number}, {"Hourly Table[ERAB Attempt]", Int64.Type}, {"Hourly Table[ERAB_DCR]", Int64.Type}, {"Hourly Table[ERAB_Drops]", Int64.Type}, {"Hourly Table[ERAB_SSR]", Int64.Type}, {"Hourly Table[ERAB_Failures]", Int64.Type}, {"Hourly Table[RRC_USERS]", type number}, {"Hourly Table[UL_THP_CELL_4G_Mbps]", type number}, {"Hourly Table[UL_PRB_Usage]", type number}, {"Hourly Table[UL_THP_USER_4G_Mbps]", type number}, {"Hourly Table[DL_Spectral_Eff]", type number}, {"Hourly Table[Avg_Agg_CQI]", type number}, {"Hourly Table[UL_VOL_4G_GB]", type number}, {"Hourly Table[VOLTE_SESSION_TIME_minutes]", Int64.Type}, {"Hourly Table[VOLTE_DCR]", Int64.Type}, {"Hourly Table[VOLTE_SSR]", Int64.Type}, {"Hourly Table[VoLTE_INTEGRITY_SESSION]", Int64.Type}, {"Hourly Table[VoLTE_INTEGRITY_UE]", Int64.Type}, {"Hourly Table[VOLTE_Erl]", Int64.Type}, {"Hourly Table[VOLTE_USERS]", type number}, {"Hourly Table[Reported Rank 1 %]", type any}, {"Hourly Table[Reported Rank 2 %]", type any}, {"Hourly Table[Reported Rank 3 %]", type any}, {"Hourly Table[Reported Rank 4 %]", type any}, {"Hourly Table[UL RSSI PUSCH New]", type any}, {"Hourly Table[UL RSSI PUCCH]", type any}, {"Hourly Table[QPSK Samples (%)]", type any}, {"Hourly Table[16 QAM Samples (%)]", type any}, {"Hourly Table[64QAM Samples(%)]", type any}, {"Hourly Table[RLC DL BLER]", type any}, {"Hourly Table[RLC UL BLER]", type any}, {"Hourly Table[UL SINR PUCCH]", type any}, {"Hourly Table[UL SINR PUSCH]", type any}, {"Hourly Table[PDCCH CFI Utilization]", type any}, {"Hourly Table[CCE Aggregation Level]", type any}}) in #"Changed Type"
Hi,
I recommend you delete the query of which you provided the code. Also delete connected group:
Create new blank query and paste there this code.
let
Source = Folder.Files("c:\Address\PowerQueryForum\Sohaib\"),
FilteredHiddenFiles = Table.SelectRows(Source, each [Attributes]?[Hidden]? <> true),
FilteredCsv = Table.SelectRows(FilteredHiddenFiles, each [Extension] = ".csv"),
BinaryToTable = Table.TransformColumns(FilteredCsv, {{"Content", each Table.PromoteHeaders(Csv.Document(_,[Delimiter=",", Encoding=1250, QuoteStyle=QuoteStyle.None])), type table}}),
CombinedTables = Table.Combine(BinaryToTable[Content]),
TransformHeaders = Table.TransformColumnNames(CombinedTables, each Text.Trim(Text.BetweenDelimiters(_, "Hourly Table[", "]"))),
ChangedType = Table.TransformColumns(TransformHeaders,{{"Date New", each Date.From(DateTime.From(_, "en-US")), type date}, {"RRC_USERS", each Number.From(_, "en-US"), type number}}),
GroupedRows = Table.Group(ChangedType, {"EutranCells", "Date New"}, {{"Max RRC_USERS Row", each Table.SelectRows(_, (x)=> x[RRC_USERS] = List.Max([RRC_USERS])), type table}}),
CombinedMaxRRC_USERS_Rows = Table.Combine(GroupedRows[Max RRC_USERS Row])
in
CombinedMaxRRC_USERS_Rows
thanks. It works like a charm
Join the community in Stockholm for expert Microsoft Fabric learning including a very exciting keynote from Arun Ulag, Corporate Vice President, Azure Data.
Check out the August 2024 Power BI update to learn about new features.