Power BI is turning 10! Tune in for a special live episode on July 24 with behind-the-scenes stories, product evolution highlights, and a sneak peek at what’s in store for the future.
Save the dateEnhance your career with this limited time 50% discount on Fabric and Power BI exams. Ends August 31st. Request your voucher.
Hello,
One column in my table is a list of strings. I would like to change the strings to lower case if their lenghts is greater than 1.
Name | Types |
N1 | A,ABC,B,CDF,DF |
N2 | H,JKL,BG,DC,C |
Convert to
Name | Types |
N1 | A,abc,B,cdf,df |
N2 | H,jkl,bg,dc,C |
Can somebody help?
Thank you
Solved! Go to Solution.
Here is one way to do this...
= Table.TransformColumns(previousQueryStep, {{"Types", each Text.Combine(List.Transform(Text.Split(_, ","), each if Text.Length(_) > 1 then Text.Lower(_) else _), ","), type text}})
Using your example table you end up with...
Proud to be a Super User! | |
For fun only, to incorporate the power of regex,
import re
import numpy as np
df['Types']=np.vectorize(lambda string:re.compile(r'[a-z]{2,}(?=\b)',flags=re.I).sub(lambda match:str.lower(match.group(0)),string))(df['Types'])
let
Source = Table.FromRows(Json.Document(Binary.Decompress(Binary.FromText("i45W8jNUUFBQ0lFy1HF0ctZx0nF2cdNxcVOK1QFKGQHFPXS8vH10nNx1XJx1nJViYwE=", BinaryEncoding.Base64), Compression.Deflate)), let _t = ((type nullable text) meta [Serialized.Text = true]) in type table [Name = _t, Types = _t]),
#"Run Python script" = Python.Execute("import re#(lf)import numpy as np#(lf)df['Types']=np.vectorize(lambda string:re.compile(r'[a-z]{2,}(?=\b)',flags=re.I).sub(lambda match:str.lower(match.group(0)),string))(df['Types'])",[df=Source]),
df = #"Run Python script"{[Name="df"]}[Value]
in
df
Expertise = List.Accumulate( {Days as from Today}, {Skills and Knowledge}, (Current, Everyday) => Current & Day.LearnAndPractise(Everyday) ) |
let
Source = Table.FromRows(Json.Document(Binary.Decompress(Binary.FromText("i45W8jNUUFBQ0lFy1HF0ctZx0nF2cdNxcVOK1QFKGQHFPXS8vH10nNx1XJx1nJViYwE=", BinaryEncoding.Base64), Compression.Deflate)), let _t = ((type nullable text) meta [Serialized.Text = true]) in type table [#"Name " = _t, Types = _t]),
chars = List.Buffer({"a".."z", "A".."Z"}),
result = Table.TransformColumns(
Source,
{
"Types",
(x) => Text.Combine(
List.Transform(
Text.Split(x, ","),
(w) => if List.Contains(chars, w) then w else Text.Lower(w)
),
","
)
}
)
in
result
Here is one way to do this...
= Table.TransformColumns(previousQueryStep, {{"Types", each Text.Combine(List.Transform(Text.Split(_, ","), each if Text.Length(_) > 1 then Text.Lower(_) else _), ","), type text}})
Using your example table you end up with...
Proud to be a Super User! | |