Skip to main content
cancel
Showing results for 
Search instead for 
Did you mean: 

Calling all Data Engineers! Fabric Data Engineer (Exam DP-700) live sessions are back! Starting October 16th. Sign up.

Reply
Merleau
Helper II
Helper II

Converting list elements based on their lengths

Hello,

One column in my table is a list of strings. I would like to change the strings to lower case if their lenghts is greater than 1.

 

Name      Types
N1   A,ABC,B,CDF,DF
N2H,JKL,BG,DC,C

 

Convert to

Name      Types
N1   A,abc,B,cdf,df
N2H,jkl,bg,dc,C

 

Can somebody help?

Thank you

1 ACCEPTED SOLUTION
jgeddes
Super User
Super User

Here is one way to do this...

= Table.TransformColumns(previousQueryStep, {{"Types", each Text.Combine(List.Transform(Text.Split(_, ","), each if Text.Length(_) > 1 then Text.Lower(_) else _), ","), type text}})

Using your example table you end up with...

jgeddes_0-1733415354730.png

 





Did I answer your question? Mark my post as a solution!

Proud to be a Super User!





View solution in original post

4 REPLIES 4
ThxAlot
Super User
Super User

For fun only, to incorporate the power of regex,

 

import re
import numpy as np
df['Types']=np.vectorize(lambda string:re.compile(r'[a-z]{2,}(?=\b)',flags=re.I).sub(lambda match:str.lower(match.group(0)),string))(df['Types'])
let
    Source = Table.FromRows(Json.Document(Binary.Decompress(Binary.FromText("i45W8jNUUFBQ0lFy1HF0ctZx0nF2cdNxcVOK1QFKGQHFPXS8vH10nNx1XJx1nJViYwE=", BinaryEncoding.Base64), Compression.Deflate)), let _t = ((type nullable text) meta [Serialized.Text = true]) in type table [Name = _t, Types = _t]),
    #"Run Python script" = Python.Execute("import re#(lf)import numpy as np#(lf)df['Types']=np.vectorize(lambda string:re.compile(r'[a-z]{2,}(?=\b)',flags=re.I).sub(lambda match:str.lower(match.group(0)),string))(df['Types'])",[df=Source]),
    df = #"Run Python script"{[Name="df"]}[Value]
in
    df

 

ThxAlot_2-1733444646849.png



Expertise = List.Accumulate(


        {Days as from Today},


        {Skills and Knowledge},


        (Current, Everyday) => Current & Day.LearnAndPractise(Everyday)


)



AlienSx
Super User
Super User

let
    Source = Table.FromRows(Json.Document(Binary.Decompress(Binary.FromText("i45W8jNUUFBQ0lFy1HF0ctZx0nF2cdNxcVOK1QFKGQHFPXS8vH10nNx1XJx1nJViYwE=", BinaryEncoding.Base64), Compression.Deflate)), let _t = ((type nullable text) meta [Serialized.Text = true]) in type table [#"Name      " = _t, Types = _t]),
    chars = List.Buffer({"a".."z", "A".."Z"}), 
    result = Table.TransformColumns(
        Source, 
        {
            "Types", 
            (x) => Text.Combine(
                List.Transform(
                    Text.Split(x, ","), 
                    (w) => if List.Contains(chars, w) then w else Text.Lower(w)
                ),
                ","
            )
        }
    )
in
    result
jgeddes
Super User
Super User

Here is one way to do this...

= Table.TransformColumns(previousQueryStep, {{"Types", each Text.Combine(List.Transform(Text.Split(_, ","), each if Text.Length(_) > 1 then Text.Lower(_) else _), ","), type text}})

Using your example table you end up with...

jgeddes_0-1733415354730.png

 





Did I answer your question? Mark my post as a solution!

Proud to be a Super User!





Thank you @jgeddes 

This is perfect!

Helpful resources

Announcements
FabCon Global Hackathon Carousel

FabCon Global Hackathon

Join the Fabric FabCon Global Hackathon—running virtually through Nov 3. Open to all skill levels. $10,000 in prizes!

October Power BI Update Carousel

Power BI Monthly Update - October 2025

Check out the October 2025 Power BI update to learn about new features.

FabCon Atlanta 2026 carousel

FabCon Atlanta 2026

Join us at FabCon Atlanta, March 16-20, for the ultimate Fabric, Power BI, AI and SQL community-led event. Save $200 with code FABCOMM.

Top Kudoed Authors