Power BI is turning 10, and we’re marking the occasion with a special community challenge. Use your creativity to tell a story, uncover trends, or highlight something unexpected.
Get startedJoin us for an expert-led overview of the tools and concepts you'll need to become a Certified Power BI Data Analyst and pass exam PL-300. Register now.
Hello,
I've ploted a bar chart with standart error in Rstudio, when addapted it to BPI only the frame was ploted with no bars or se.
please help finding and resolving the problem.
Thanks,
Z
Please find the script and the Rstudio plot:
library(ggplot2) library(Rmisc) library(tidyr) ## Source file Directory ## SourcWD<-"C:\\Users\\Lenovo\\Desktop\\BI-O\\Data Files" setwd(SourcWD) ## Loading File as dataset ## dataset<-read.csv(file="C:\\Users\\Lenovo\\Desktop\\BI-O\\Data Files\\caa.csv", header = TRUE, sep = ",") attach(dataset) dataset # Converting from Wide to Long keycol <- "Type" valuecol <- "Mean" gathercols <- c("CAA.Percent", "CAA.Potency") dataset_long<-gather_(dataset, keycol, valuecol, gathercols) #Summerizing dataset_data <- summarySE(dataset_long, measurevar="Mean","Type") dataset_data #Ploting ggplot(dataset_data, aes(x=Type, y=Mean, fill=Type)) + geom_bar(position=position_dodge(), stat="identity", colour="black", # Use black outlines, size=.3) + # Thinner lines geom_errorbar(aes(ymin=Mean-sd, ymax=Mean+sd), size=1, # Thinner lines width=.3, position=position_dodge(.1)) + xlab(" Test ") + ylab("Results") + scale_fill_hue(name="Test type", # Legend label, use darker colors labels=c("CAA %", "CAA Potency")) + ggtitle("CAA (%) vs. CAA Potency") + scale_y_continuous(breaks=0:20*4) + theme_bw()
and the plot:
Also please find the BPI code:
library(data.table, quietly = TRUE); library(ggplot2, quietly = TRUE); library(tidyr, quietly = TRUE); library(Rmisc, quietly = TRUE); attach(dataset) #dataset$Batch <- factor(dataset$Batch) keycol <- "Type" valuecol <- "Mean" gathercols <- c("CAA.Percent", "CAA.Potency") dataset_long<-gather_(dataset, keycol, valuecol, gathercols) dataset_data <- summarySE(dataset_long, measurevar="Mean","Type") ggplot(dataset_data, aes(x=Type, y=Mean, fill=Type)) + geom_bar(position=position_dodge(), stat="identity", colour="black", # Use black outlines, size=.3) + # Thinner lines geom_errorbar(aes(ymin=Mean-sd, ymax=Mean+sd), size=.5, # Thinner lines width=.3, position=position_dodge(.9)) + xlab(" Test ") + ylab("Results") + scale_fill_hue(name="Test type", # Legend label, use darker colors labels=c( "CAA %","CAA Potency")) + ggtitle("CAA (%) vs. CAA Potency") + scale_y_continuous(breaks=0:20*4) + theme_bw()
and the empty plot:
@ZviR can you also provide csv file or sample data so that I can troubleshoot your issue.
Batch CAA Percent CAA Potency R15 78 110 R16 79 114 R17 92 123 R19 74 109 R21 76 107 R24 61 84 R25 65 90 R26 66 94 R27 80 102
Thanks,
Z
This is your chance to engage directly with the engineering team behind Fabric and Power BI. Share your experiences and shape the future.
Check out the June 2025 Power BI update to learn about new features.
User | Count |
---|---|
77 | |
74 | |
57 | |
39 | |
33 |
User | Count |
---|---|
70 | |
63 | |
57 | |
49 | |
46 |