Power BI is turning 10, and we’re marking the occasion with a special community challenge. Use your creativity to tell a story, uncover trends, or highlight something unexpected.
Get startedJoin us for an expert-led overview of the tools and concepts you'll need to become a Certified Power BI Data Analyst and pass exam PL-300. Register now.
Hi,
I was wondering if it is possible to calculate YoY%, QoQ% and MoM% changes dynamically in a matrix visualization based on the date hierachy level. More generally speaking I want to calculate the change of a column based on its left neighbour column.
Let's assume I have a data model like:
And a matrix like:
Is there a way to calculate a dynamic measure that calculates the corresponding % changes depending on the hierarchy level?
Thanks for your help!
Hi @mwegener Is it possible to extend this measure to work with Week over Week comparisons? I tried to do the following, but it doesn't seem to work - would appreciate your insights:
Note: dim_weeks[id] is a specially created table linked to my date table that increments by 1 every week.
Measure PoP% =
VAR __PREV_YEAR = CALCULATE(SUM('Fact'[Measure]), DATEADD('Date_Dimension'[Date], -1, YEAR))
VAR __YOY = DIVIDE(SUM('Fact'[Measure]) - __PREV_YEAR, __PREV_YEAR)
VAR __PREV_QUARTER = CALCULATE(SUM('Fact'[Measure]), DATEADD('Date_Dimension'[Date], -1, QUARTER))
VAR __QOQ = DIVIDE(SUM('Fact'[Measure]) - __PREV_QUARTER, __PREV_QUARTER)
VAR __PREV_MONTH = CALCULATE(SUM('Fact'[Measure]), DATEADD('Date_Dimension'[Date], -1, MONTH))
VAR __MOM = DIVIDE(SUM('Fact'[Measure]) - __PREV_MONTH, __PREV_MONTH)
VAR __PREV_WEEK = CALCULATE(SUM('Fact'[Measure]), FILTER(ALL('dim_weeks'), dim_weeks[id] = min(dim_weeks[id]) - 1)
VAR __WOW = DIVIDE(SUM('Fact'[Measure]) - __PREV_WEEK, __PREV_WEEK)
RETURN
SWITCH(TRUE(),
HASONEFILTER(Date_Dimension[Week]), __WOW,
HASONEFILTER(Date_Dimension[Month]), __MOM,
HASONEFILTER(Date_Dimension[Quarter]), __QOQ,
HASONEFILTER(Date_Dimension[Year]), __YOY,
BLANK()
)
Hi @mase_53 ,
does this solution work for you?
Measure PoP% =
VAR __PREV_YEAR = CALCULATE(SUM('Fact'[Measure]), DATEADD('Date_Dimension'[Date], -1, YEAR))
VAR __YOY = DIVIDE(SUM('Fact'[Measure]) - __PREV_YEAR, __PREV_YEAR)
VAR __PREV_QUARTER = CALCULATE(SUM('Fact'[Measure]), DATEADD('Date_Dimension'[Date], -1, QUARTER))
VAR __QOQ = DIVIDE(SUM('Fact'[Measure]) - __PREV_QUARTER, __PREV_QUARTER)
VAR __PREV_MONTH = CALCULATE(SUM('Fact'[Measure]), DATEADD('Date_Dimension'[Date], -1, MONTH))
VAR __MOM = DIVIDE(SUM('Fact'[Measure]) - __PREV_MONTH, __PREV_MONTH)
VAR __PREV_WEEK = CALCULATE(SUM('Fact'[Measure]), DATEADD('Date_Dimension'[Date], -7, DAY))
VAR __WOW = DIVIDE(SUM('Fact'[Measure]) - __PREV_WEEK, __PREV_WEEK)
RETURN
SWITCH(TRUE(),
HASONEFILTER(Date_Dimension[Week]), __WOW,
HASONEFILTER(Date_Dimension[Month]), __MOM,
HASONEFILTER(Date_Dimension[Quarter]), __QOQ,
HASONEFILTER(Date_Dimension[Year]), __YOY,
BLANK()
)
Marcus Wegener works as Full Stack Power BI Engineer at BI or DIE.
His mission is clear: "Get the most out of data, with Power BI."
twitter - LinkedIn - YouTube - website - podcast - Power BI Tutorials
Hi @Anonymous ,
you can check which level is filtered and return the corresponding calculation.
Measure PoP% =
VAR __PREV_YEAR = CALCULATE(SUM('Fact'[Measure]), DATEADD('Date_Dimension'[Date], -1, YEAR))
VAR __YOY = DIVIDE(SUM('Fact'[Measure]) - __PREV_YEAR, __PREV_YEAR)
VAR __PREV_QUARTER = CALCULATE(SUM('Fact'[Measure]), DATEADD('Date_Dimension'[Date], -1, QUARTER))
VAR __QOQ = DIVIDE(SUM('Fact'[Measure]) - __PREV_QUARTER, __PREV_QUARTER)
VAR __PREV_MONTH = CALCULATE(SUM('Fact'[Measure]), DATEADD('Date_Dimension'[Date], -1, MONTH))
VAR __MOM = DIVIDE(SUM('Fact'[Measure]) - __PREV_MONTH, __PREV_MONTH)
RETURN
SWITCH(TRUE(),
HASONEFILTER(Date_Dimension[Month]), __MOM,
HASONEFILTER(Date_Dimension[Quarter]), __QOQ,
HASONEFILTER(Date_Dimension[Year]), __YOY,
BLANK()
)
Marcus Wegener works as Full Stack Power BI Engineer at BI or DIE.
His mission is clear: "Get the most out of data, with Power BI."
twitter - LinkedIn - YouTube - website - podcast - Power BI Tutorials
This is your chance to engage directly with the engineering team behind Fabric and Power BI. Share your experiences and shape the future.
Check out the June 2025 Power BI update to learn about new features.
User | Count |
---|---|
78 | |
76 | |
59 | |
35 | |
33 |
User | Count |
---|---|
100 | |
62 | |
56 | |
47 | |
41 |