Join us at FabCon Atlanta from March 16 - 20, 2026, for the ultimate Fabric, Power BI, AI and SQL community-led event. Save $200 with code FABCOMM.
Register now!Vote for your favorite vizzies from the Power BI Dataviz World Championship submissions. Vote now!
My goal is to extract a list of tables and M queires for each of them from a Semantic Model/Dataset published on a Fabric Workspace.
I use Fabric Notebooks and Python SemPy library to extract such things as tables, columns, relationships, measures, sources etc. and it works just fine but I have troubles with extracting M Code which is nested in TMSL Code.
Here I found example by Sandeep Pawar where he extracts different atributes from TMSL. I tried to edit his code to extract also M Code but failed as I do not fully understand his Python code.
https://fabric.guru/fabric-semantic-link-and-use-cases
Code:
import json
import pandas as pd
import sempy.fabric as fabric
dataset_name = "Test Dataset for SemPy"
workspace_name = "Fabrics Preview"
def custom_flatten(json_object, dataset_name, table_name=None, table_properties=None, column_name=None, flat_list=None):
if flat_list is None:
flat_list = []
if table_properties is None:
table_properties = {}
if not table_name: # Dataset level
for k, v in json_object.items():
if k == 'model':
table_properties.update({f"dataset_{key}": value for key, value in v.items() if key != 'tables'})
custom_flatten(v, dataset_name, table_properties=table_properties, flat_list=flat_list)
elif k == 'tables': # Table level
for table in v:
custom_flatten(table, dataset_name, table_name=table['name'], table_properties=table_properties, flat_list=flat_list)
elif k != 'name':
table_properties[f"dataset_{k}"] = v
elif not column_name: # Table level
for k, v in json_object.items():
if k == 'columns': # Column level
for column in v:
custom_flatten(column, dataset_name, table_name, table_properties, column_name=column['name'], flat_list=flat_list)
elif k != 'name':
table_properties[f"table_{k}"] = v
else: # Column level
column_properties = {f"column_{k}": v for k, v in json_object.items() if k != 'name'}
row = {'dataset_name': dataset_name, 'table_name': table_name, **table_properties, 'column_name': column_name, **column_properties}
flat_list.append(row)
return flat_list
tmsl_data = json.loads(fabric.get_tmsl(workspace=workspace_name, dataset=dataset_name))
dataset_name = tmsl_data['name']
flat_data = custom_flatten(tmsl_data, dataset_name)
tmsl_df = pd.DataFrame(flat_data)
tmsl_df.head()
Solved! Go to Solution.
Ok, solved it 🙂
I can run in notebook DAX query with INFO.PARTITIONS() function that reads from DMV
Code:
Ok, solved it 🙂
I can run in notebook DAX query with INFO.PARTITIONS() function that reads from DMV
Code:
Vote for your favorite vizzies from the Power BI World Championship submissions!
If you love stickers, then you will definitely want to check out our Community Sticker Challenge!
Check out the January 2026 Power BI update to learn about new features.
| User | Count |
|---|---|
| 22 | |
| 11 | |
| 10 | |
| 9 | |
| 9 |
| User | Count |
|---|---|
| 54 | |
| 39 | |
| 37 | |
| 27 | |
| 25 |