Share feedback directly with Fabric product managers, participate in targeted research studies and influence the Fabric roadmap.
Sign up nowGet Fabric certified for FREE! Don't miss your chance! Learn more
i have data in tab Input sheet in need the result in tab Output sheet
data in Excel : https://www.dropbox.com/scl/fi/4ucmiwijhu253sbg043d5/Data.xlsx?dl=0&rlkey=grbj0mom9w3tj53dz76padjtf
Solved! Go to Solution.
let
Source = Table.FromRows(Json.Document(Binary.Decompress(Binary.FromText("nZhPbxMxEMW/S861Yo+9/44hUIXQlJIgLlUPoYq4VFAhgsS3x7v27M7sjr0LUiTL1fYXP8+z520eH1cftpv1Vu3e3W3u1Be7Pq1vlTbro1kfjPp8f1KgtV7drEwYrNq8/vR/A+Mn7aC0U8YMD6RxoLab0w55gLzD+Q/y/CePsDJif/3OEE83siyIsgQIaHX/43dL0SjM+E+RWRKkVXna28tzT7N0lseJCj1uf+4lmobO0mptC7QPUW4TUHEwoDbXb7yOtTI2s76Ii3rbaqMtuiUWuH8dsKGzGaLtbNYuTLVPVz3wcO6d5mvBfKfTsouWWjwE8xpuXq0+Pv8iRfbfqBVUmTVGGnS0Aor2uTgAdUxNJ/GBDC9oLsNzJfJuL19RYkknabEl1hjF0pqYUY07tTqntsQad7gCSzIA/9nVZTwkAxDaDRJ4Da23qPj9m92xZVb0GNsqlDYMDiX3Bfa2hkZeIOeBzDtdXnteTWezQCsDiQMdNU1Wcs0kQyBC3MT99YVLLhUkLi7OA5lHttDSySzPyjyyaQXfwZStG+w/x9FNaLBdDGKdsjkDNmjAKSq2DZ3vPE2UJgJeGCAhx2gixwZEHGBavNpfjOnlRBaILFKrasaqhGVFFvl35tm0SjOoNHXYoXrqqCCyUlBnFmYGkWNUXFfsMnl3EpaVWESWbw1LnGm6Lg1tU919Uga7adOHo+ntk61mxEHATe5v0gMMbwid4/qPsF6XTHI4lNhS6VmSm6GbzXGeRk8mO6d5nJx4Sno6fRYgs7RYYIlnElGAta+uH4KvYWaFkM08LJOwyQwvSq4Dpha6dVZmwWIsRHGYmsYatdconjVGgwSNJE3f/kYWTONsAkcAFd+wlNiSiXUB5GIdpIICZFZXMrFjGhHreMbO0WyCxrTm05zj0cGghV10muudJ72laCdeCQuuiGy80ClH+U22MYZPNyabMLRgK+Po5ixg8pSx4A5smIV4D9fi+yxuaJomXoKeNvM263imkBmzr7NuFCv83W6LeNKKdNFyXh5yRfueg8F/wNGCVQvugSFbIA8Yj3a2+dPB8kW4i4NeHKQq6tzyWCsbwxYV0bD2NUYsrSH/SSIEE6j/UxT/RWIEWyaK/woxQkxEPf0F", BinaryEncoding.Base64), Compression.Deflate)), let _t = ((type nullable text) meta [Serialized.Text = true]) in type table [Payment_ID1 = _t, Payment1 = _t, #"Due Date1" = _t, #"Actual Payment Date1" = _t, Remaining1 = _t, Payment_ID2 = _t, Payment2 = _t, #"Due Date2" = _t, #"Actual Payment Date2" = _t, Remaining2 = _t, Payment_ID3 = _t, Payment3 = _t, #"Due Date3" = _t, #"Actual Payment Date3" = _t, Remaining3 = _t]),
#"Grouped Columns" = List.Split(Table.ToColumns(Source),5),
Custom1 = let cols = List.Transform(List.FirstN(Table.ColumnNames(Source), 5), each Text.Remove(_, {"0".."9"})) in Table.Combine(List.Accumulate({1..List.Count(#"Grouped Columns")}, {}, (s,c) => s & {Table.TransformColumns(Table.Unpivot(Table.FromColumns(#"Grouped Columns"{c-1}, cols), {"Payment"}, "PMT", "Amount"), {"PMT", each _ & Text.From(c)})})),
#"Filtered Rows" = Table.SelectRows(Custom1, each ([Payment_ID] <> ""))
in
#"Filtered Rows"
| Thanks to the great efforts by MS engineers to simplify syntax of DAX! Most beginners are SUCCESSFULLY MISLED to think that they could easily master DAX; but it turns out that the intricacy of the most frequently used RANKX() is still way beyond their comprehension! |
DAX is simple, but NOT EASY! |
let
Source = Table.FromRows(Json.Document(Binary.Decompress(Binary.FromText("nZhPbxMxEMW/S861Yo+9/44hUIXQlJIgLlUPoYq4VFAhgsS3x7v27M7sjr0LUiTL1fYXP8+z520eH1cftpv1Vu3e3W3u1Be7Pq1vlTbro1kfjPp8f1KgtV7drEwYrNq8/vR/A+Mn7aC0U8YMD6RxoLab0w55gLzD+Q/y/CePsDJif/3OEE83siyIsgQIaHX/43dL0SjM+E+RWRKkVXna28tzT7N0lseJCj1uf+4lmobO0mptC7QPUW4TUHEwoDbXb7yOtTI2s76Ii3rbaqMtuiUWuH8dsKGzGaLtbNYuTLVPVz3wcO6d5mvBfKfTsouWWjwE8xpuXq0+Pv8iRfbfqBVUmTVGGnS0Aor2uTgAdUxNJ/GBDC9oLsNzJfJuL19RYkknabEl1hjF0pqYUY07tTqntsQad7gCSzIA/9nVZTwkAxDaDRJ4Da23qPj9m92xZVb0GNsqlDYMDiX3Bfa2hkZeIOeBzDtdXnteTWezQCsDiQMdNU1Wcs0kQyBC3MT99YVLLhUkLi7OA5lHttDSySzPyjyyaQXfwZStG+w/x9FNaLBdDGKdsjkDNmjAKSq2DZ3vPE2UJgJeGCAhx2gixwZEHGBavNpfjOnlRBaILFKrasaqhGVFFvl35tm0SjOoNHXYoXrqqCCyUlBnFmYGkWNUXFfsMnl3EpaVWESWbw1LnGm6Lg1tU919Uga7adOHo+ntk61mxEHATe5v0gMMbwid4/qPsF6XTHI4lNhS6VmSm6GbzXGeRk8mO6d5nJx4Sno6fRYgs7RYYIlnElGAta+uH4KvYWaFkM08LJOwyQwvSq4Dpha6dVZmwWIsRHGYmsYatdconjVGgwSNJE3f/kYWTONsAkcAFd+wlNiSiXUB5GIdpIICZFZXMrFjGhHreMbO0WyCxrTm05zj0cGghV10muudJ72laCdeCQuuiGy80ClH+U22MYZPNyabMLRgK+Po5ixg8pSx4A5smIV4D9fi+yxuaJomXoKeNvM263imkBmzr7NuFCv83W6LeNKKdNFyXh5yRfueg8F/wNGCVQvugSFbIA8Yj3a2+dPB8kW4i4NeHKQq6tzyWCsbwxYV0bD2NUYsrSH/SSIEE6j/UxT/RWIEWyaK/woxQkxEPf0F", BinaryEncoding.Base64), Compression.Deflate)), let _t = ((type nullable text) meta [Serialized.Text = true]) in type table [Payment_ID1 = _t, Payment1 = _t, #"Due Date1" = _t, #"Actual Payment Date1" = _t, Remaining1 = _t, Payment_ID2 = _t, Payment2 = _t, #"Due Date2" = _t, #"Actual Payment Date2" = _t, Remaining2 = _t, Payment_ID3 = _t, Payment3 = _t, #"Due Date3" = _t, #"Actual Payment Date3" = _t, Remaining3 = _t]),
#"Grouped Columns" = List.Split(Table.ToColumns(Source),5),
Custom1 = let cols = List.Transform(List.FirstN(Table.ColumnNames(Source), 5), each Text.Remove(_, {"0".."9"})) in Table.Combine(List.Accumulate({1..List.Count(#"Grouped Columns")}, {}, (s,c) => s & {Table.TransformColumns(Table.Unpivot(Table.FromColumns(#"Grouped Columns"{c-1}, cols), {"Payment"}, "PMT", "Amount"), {"PMT", each _ & Text.From(c)})})),
#"Filtered Rows" = Table.SelectRows(Custom1, each ([Payment_ID] <> ""))
in
#"Filtered Rows"
| Thanks to the great efforts by MS engineers to simplify syntax of DAX! Most beginners are SUCCESSFULLY MISLED to think that they could easily master DAX; but it turns out that the intricacy of the most frequently used RANKX() is still way beyond their comprehension! |
DAX is simple, but NOT EASY! |
One of the options:
t1 = Table.SelectColumns(Source,{"A", "B", "C"}),
t2 = Table.RenameColumns(Table.SelectColumns(Source,{"A1", "B1", "C1"}), {{"A1", "A"},{"B1", "B"},{"C1", "C"}}),
t3 = Table.RenameColumns(Table.SelectColumns(Source,{"A2", "B2", "C2"}), {{"A2", "A"},{"B2", "B"},{"C2", "C"}}),
res = Table.Combine({t1,t2,t3})If this post helps, then please consider Accept it as the solution ✔️to help the other members find it more quickly.
If this post helps, then please consider Accept it as the solution to help the other members find it more quickly. Appreciate your Kudos.
Check out my latest demo report in the data story gallery.
Stand with Ukraine!
Here are official ways you can support Ukraine financially (accounts with multiple currencies):
1) Support the Armed Forces of Ukraine: https://bank.gov.ua/ua/about/support-the-armed-forces
2) Come Back Alive foundation: https://www.comebackalive.in.ua/
Thank you!
If you love stickers, then you will definitely want to check out our Community Sticker Challenge!
Check out the January 2026 Power BI update to learn about new features.
| User | Count |
|---|---|
| 13 | |
| 11 | |
| 11 | |
| 7 | |
| 6 |