Skip to main content
cancel
Showing results for 
Search instead for 
Did you mean: 

Compete to become Power BI Data Viz World Champion! First round ends August 18th. Get started.

Reply
Lheyman
New Member

Transposing only one column

The input. 

Lheyman_0-1694140850852.png

 the attempted output

Lheyman_1-1694140953382.png

I have tried creating individual tables with indexed values  as shown below 

Lheyman_2-1694141058876.png

Lheyman_3-1694141078804.png

Lheyman_4-1694141098002.png

Lheyman_5-1694141167625.png

 

 The Table that i create after, still does not  accept the proper formating 

 

Please help!

 

 

 

2 ACCEPTED SOLUTIONS
Anonymous
Not applicable

Hi @Lheyman ,

 

You can use pivot to solve it.

For the Fee column, create a index group by Household column. Remove other columns and then use the pivot column feature.

let
    Source = Table.FromRows(Json.Document(Binary.Decompress(Binary.FromText("ldFBCoMwEAXQq0igOwnNHw9QCYJCbaCUdiEuu+2im16/EyZqUlJUEUadn5chDoNqW6NKVVt7Kwxf/BwKNwr3eT3fRXhzj0tzNaemr7uztq7nr3KbgxrLXwkiYZ+kzTGHkWC0EVsyiDJJxGhkd6pkp2oeaZNFs4XJAuDdULiRTI31w4wliIR9UnSYNGFE5NeFwo0Eo/WxvHTn5RAF+5Q/I5FgtBFbMogyyP3g8Qs=", BinaryEncoding.Base64), Compression.Deflate)), let _t = ((type nullable text) meta [Serialized.Text = true]) in type table [Household = _t, #"Account Name" = _t, #"Account #" = _t, #"Account Owner 1" = _t, #"Owner Email 1" = _t, #"Account Owner 2" = _t, #"Owner Email 2" = _t, Fee = _t]),
    #"Grouped Rows" = Table.Group(Source, {"Household"}, {{"Count", each _, type table [Household=nullable text, Account Name=nullable text, #"Account #"=nullable text, Account Owner 1=nullable text, Owner Email 1=nullable text, Account Owner 2=nullable text, Owner Email 2=nullable text, Fee=nullable text]}}),
    #"Added Custom" = Table.AddColumn(#"Grouped Rows", "Custom", each Table.AddIndexColumn([Count],"Index",1,1)),
    #"Removed Columns" = Table.RemoveColumns(#"Added Custom",{"Count"}),
    #"Expanded Custom" = Table.ExpandTableColumn(#"Removed Columns", "Custom", {"Account Name", "Account #", "Account Owner 1", "Owner Email 1", "Account Owner 2", "Owner Email 2", "Fee", "Index"}, {"Account Name", "Account #", "Account Owner 1", "Owner Email 1", "Account Owner 2", "Owner Email 2", "Fee", "Index"}),
    #"Removed Columns1" = Table.RemoveColumns(#"Expanded Custom",{"Account Name", "Account #", "Account Owner 1", "Owner Email 1", "Account Owner 2", "Owner Email 2"}),
    #"Pivoted Column" = Table.Pivot(Table.TransformColumnTypes(#"Removed Columns1", {{"Index", type text}}, "en-US"), List.Distinct(Table.TransformColumnTypes(#"Removed Columns1", {{"Index", type text}}, "en-US")[Index]), "Index", "Fee")
in
    #"Pivoted Column"

vstephenmsft_0-1694419157004.png

Use the same method for the Account # column and Account Name column, and then merge them.

Hope it helps.

Pivot columns - Power Query | Microsoft Learn

Merge queries overview - Power Query | Microsoft Learn

 

Best Regards,

Stephen Tao

 

If this post helps, then please consider Accept it as the solution to help the other members find it more quickly

View solution in original post

slorin
Super User
Super User

Hi

Another solution

let
Source = Table.FromRows(Json.Document(Binary.Decompress(Binary.FromText("ldFBCoMwEAXQq0igOwnNHw9QCYJCbaCUdiEuu+2im16/EyZqUlJUEUadn5chDoNqW6NKVVt7Kwxf/BwKNwr3eT3fRXhzj0tzNaemr7uztq7nr3KbgxrLXwkiYZ+kzTGHkWC0EVsyiDJJxGhkd6pkp2oeaZNFs4XJAuDdULiRTI31w4wliIR9UnSYNGFE5NeFwo0Eo/WxvHTn5RAF+5Q/I5FgtBFbMogyyP3g8Qs=", BinaryEncoding.Base64), Compression.Deflate)), let _t = ((type nullable text) meta [Serialized.Text = true]) in type table [Household = _t, #"Account Name" = _t, #"Account #" = _t, #"Account Owner 1" = _t, #"Owner Email 1" = _t, #"Account Owner 2" = _t, #"Owner Email 2" = _t, Fee = _t]),
Group = Table.Group(Source, {"Household"},
{{"Account Owner 1", each Text.Combine(List.Distinct([Account Owner 1]))},
{"Owner Email 1", each Text.Combine(List.Distinct([Owner Email 1]))},
{"Account Owner 2", each Text.Combine(List.Distinct([Account Owner 2]))},
{"Owner Email 2", each Text.Combine(List.Distinct([Owner Email 2]))},
{"Data", each #table(null, {List.Combine(Table.ToRows(Table.FromColumns({[Account Name], [#"Account #"], [Fee]})))})}
}),
Expand = Table.ExpandTableColumn(Group, "Data",
{"Column1", "Column2", "Column3", "Column4", "Column5", "Column6", "Column7", "Column8", "Column9", "Column10", "Column11", "Column12"},
{"Account Name1", "Account #1", "Fee1","Account Name2", "Account #2", "Fee2","Account Name3", "Account #3", "Fee3","Account Name4", "Account #4", "Fee4"})
in
Expand

Stéphane

View solution in original post

2 REPLIES 2
slorin
Super User
Super User

Hi

Another solution

let
Source = Table.FromRows(Json.Document(Binary.Decompress(Binary.FromText("ldFBCoMwEAXQq0igOwnNHw9QCYJCbaCUdiEuu+2im16/EyZqUlJUEUadn5chDoNqW6NKVVt7Kwxf/BwKNwr3eT3fRXhzj0tzNaemr7uztq7nr3KbgxrLXwkiYZ+kzTGHkWC0EVsyiDJJxGhkd6pkp2oeaZNFs4XJAuDdULiRTI31w4wliIR9UnSYNGFE5NeFwo0Eo/WxvHTn5RAF+5Q/I5FgtBFbMogyyP3g8Qs=", BinaryEncoding.Base64), Compression.Deflate)), let _t = ((type nullable text) meta [Serialized.Text = true]) in type table [Household = _t, #"Account Name" = _t, #"Account #" = _t, #"Account Owner 1" = _t, #"Owner Email 1" = _t, #"Account Owner 2" = _t, #"Owner Email 2" = _t, Fee = _t]),
Group = Table.Group(Source, {"Household"},
{{"Account Owner 1", each Text.Combine(List.Distinct([Account Owner 1]))},
{"Owner Email 1", each Text.Combine(List.Distinct([Owner Email 1]))},
{"Account Owner 2", each Text.Combine(List.Distinct([Account Owner 2]))},
{"Owner Email 2", each Text.Combine(List.Distinct([Owner Email 2]))},
{"Data", each #table(null, {List.Combine(Table.ToRows(Table.FromColumns({[Account Name], [#"Account #"], [Fee]})))})}
}),
Expand = Table.ExpandTableColumn(Group, "Data",
{"Column1", "Column2", "Column3", "Column4", "Column5", "Column6", "Column7", "Column8", "Column9", "Column10", "Column11", "Column12"},
{"Account Name1", "Account #1", "Fee1","Account Name2", "Account #2", "Fee2","Account Name3", "Account #3", "Fee3","Account Name4", "Account #4", "Fee4"})
in
Expand

Stéphane

Anonymous
Not applicable

Hi @Lheyman ,

 

You can use pivot to solve it.

For the Fee column, create a index group by Household column. Remove other columns and then use the pivot column feature.

let
    Source = Table.FromRows(Json.Document(Binary.Decompress(Binary.FromText("ldFBCoMwEAXQq0igOwnNHw9QCYJCbaCUdiEuu+2im16/EyZqUlJUEUadn5chDoNqW6NKVVt7Kwxf/BwKNwr3eT3fRXhzj0tzNaemr7uztq7nr3KbgxrLXwkiYZ+kzTGHkWC0EVsyiDJJxGhkd6pkp2oeaZNFs4XJAuDdULiRTI31w4wliIR9UnSYNGFE5NeFwo0Eo/WxvHTn5RAF+5Q/I5FgtBFbMogyyP3g8Qs=", BinaryEncoding.Base64), Compression.Deflate)), let _t = ((type nullable text) meta [Serialized.Text = true]) in type table [Household = _t, #"Account Name" = _t, #"Account #" = _t, #"Account Owner 1" = _t, #"Owner Email 1" = _t, #"Account Owner 2" = _t, #"Owner Email 2" = _t, Fee = _t]),
    #"Grouped Rows" = Table.Group(Source, {"Household"}, {{"Count", each _, type table [Household=nullable text, Account Name=nullable text, #"Account #"=nullable text, Account Owner 1=nullable text, Owner Email 1=nullable text, Account Owner 2=nullable text, Owner Email 2=nullable text, Fee=nullable text]}}),
    #"Added Custom" = Table.AddColumn(#"Grouped Rows", "Custom", each Table.AddIndexColumn([Count],"Index",1,1)),
    #"Removed Columns" = Table.RemoveColumns(#"Added Custom",{"Count"}),
    #"Expanded Custom" = Table.ExpandTableColumn(#"Removed Columns", "Custom", {"Account Name", "Account #", "Account Owner 1", "Owner Email 1", "Account Owner 2", "Owner Email 2", "Fee", "Index"}, {"Account Name", "Account #", "Account Owner 1", "Owner Email 1", "Account Owner 2", "Owner Email 2", "Fee", "Index"}),
    #"Removed Columns1" = Table.RemoveColumns(#"Expanded Custom",{"Account Name", "Account #", "Account Owner 1", "Owner Email 1", "Account Owner 2", "Owner Email 2"}),
    #"Pivoted Column" = Table.Pivot(Table.TransformColumnTypes(#"Removed Columns1", {{"Index", type text}}, "en-US"), List.Distinct(Table.TransformColumnTypes(#"Removed Columns1", {{"Index", type text}}, "en-US")[Index]), "Index", "Fee")
in
    #"Pivoted Column"

vstephenmsft_0-1694419157004.png

Use the same method for the Account # column and Account Name column, and then merge them.

Hope it helps.

Pivot columns - Power Query | Microsoft Learn

Merge queries overview - Power Query | Microsoft Learn

 

Best Regards,

Stephen Tao

 

If this post helps, then please consider Accept it as the solution to help the other members find it more quickly

Helpful resources

Announcements
July 2025 community update carousel

Fabric Community Update - July 2025

Find out what's new and trending in the Fabric community.

July PBI25 Carousel

Power BI Monthly Update - July 2025

Check out the July 2025 Power BI update to learn about new features.

Top Kudoed Authors