Skip to main content
cancel
Showing results for 
Search instead for 
Did you mean: 

The Power BI Data Visualization World Championships is back! Get ahead of the game and start preparing now! Learn more

Reply
ashameen01
Regular Visitor

Transform Data Table in Power Query

I am new to PQ, I need help on the following:

 

I have a source data in the following format in excel:

LicenceYearCompanyCategory
LTE2022BNLGD
LTE2022ELELLLGL
LTE2022VECLLGL
LTE2023RNGLGL
LTE2023TOCELGL
LTE2023UTMLGL
LTE2023RNG2LGL
LTE2023SPLGPL
LTE2023ACELGL
LTE2024ANDARAGD
LTE2024OHURGPL
LTE2024RHFDGPL
LTC2022INDLGD
LTC2023FMGGPL
LTC2023NALGLGL
LTC2023SAPLGD
LTC2024ANDARAGD
AIHC2022COTTGPL
AIHC2023POCGPL
AIHC 2024ODAFGPL
LTO2022ASHGPL
LTO2022NEPGPL
LTO2022DFLGD
LTO2022NOTRGPL
LTO2023GRANVLLGL
LTO2024GAILGPL

And I need to transform it to the following form in Power Query:

 

LicenceYearGPLGDLGLList of Companies granted
LTE2022 12VECL, BNL, ELELL
LTC2022 1 INDL
AIHC20221  COTT
LTO202231 ASH, NEP, DFL,NOTR
LTE20231 5RNG, TOCE, UTM,RNG2,SPL,ACE
LTC2023111FMG,NALG,SAPL
AIHC20231  POC
LTO2023  1GRANVL
LTE202421 OHUR,RHFD,ANDARA
LTC2024 1 ANDARA
AIHC20241  ODAF
LTO20241  GAIL

 

 

Thank you for your kind help.

 

 

 

1 ACCEPTED SOLUTION
jennratten
Super User
Super User

Hello @ashameen01, you can achieve the desired result by grouping the rows by license and year, and then aggregating categories and companies by the groups.

let
    Source = Table.FromRows(Json.Document(Binary.Decompress(Binary.FromText("fZJBDsIgEEWvYrp2YaoXGIHSJgiEoolpumhMY1zYGuPG2wsuBHRw02n6mD//T+m6QlxO43Qai2VxHIe7K2S+3obp6d+Gx3ie78+iX7pzlrlP5aosXdlK4Z6c/hImmPBMcPELD4ygbO2KkTyHrCIsx/Z290exzLFWvwNoBAE+bOORpGAASe6hqvcG0/TM1BVNGAlLaSRNlkmClWrHsS6PJIh0XxFrQWOKWAJo6sgKUdZGAwP0qlqRL7aIwlOoEqsqqEJb55BkOodolWSIm5Q1WJc3yQ3IQ3rHVHDJofn89v4F", BinaryEncoding.Base64), Compression.Deflate)), let _t = ((type nullable text) meta [Serialized.Text = true]) in type table [#"(blank)" = _t, #"(blank).1" = _t, #"(blank).2" = _t, #"(blank).3" = _t]),
    #"Changed Type" = Table.TransformColumnTypes(Source,{{"(blank)", type text}, {"(blank).1", type text}, {"(blank).2", type text}, {"(blank).3", type text}}),
    #"Promoted Headers" = Table.PromoteHeaders(#"Changed Type", [PromoteAllScalars=true]),
    #"Changed Type1" = Table.TransformColumnTypes(#"Promoted Headers",{{"Licence", type text}, {"Year", Int64.Type}, {"Company", type text}, {"Category", type text}}),
    #"Grouped Rows" = Table.Group(#"Changed Type1", {"Licence", "Year"}, {{"GPL", each List.Count ( List.Select ( _[Category], each _ = "GPL" ) ), type number }, {"GD", each List.Count ( List.Select ( _[Category], each _ = "GD" ) ), type number}, {"LGL", each List.Count ( List.Select ( _[Category], each _ = "LGL" ) ), type number}, {"Companies", each Text.Combine ( _[Company], ", " ), type nullable text}})
in
    #"Grouped Rows"

jennratten_0-1717280932075.png

 

View solution in original post

4 REPLIES 4
AlienSx
Super User
Super User

 

let
    Source = your_table,
    group = Table.Group(
        Source, {"Licence", "Year"}, 
        {{"x", (x) => Function.Invoke(
            Record.FromList,
            List.Reverse(
                Table.ToColumns(
                    Table.Group(x, "Category", {"count", Table.RowCount})
                )
            )
        )},
        {"List of companies", (x) => Text.Combine(List.Distinct(x[Company]), ", ")}}),
    xpand = Table.ExpandRecordColumn(group, "x", List.Distinct(Source[Category]))
in
    xpand

or slightly modified @jennratten 's code to avoid hard coded categories

let
    Source = your_table,
    lst = List.Transform(
        List.Distinct(Source[Category]), 
        (x) => {x, (y) => List.Count(List.Select(y[Category], (w) => w = x))}
    ),
    group = Table.Group(
        Source, {"Licence", "Year"}, 
        lst & {{"List of companies", (x) => Text.Combine(List.Distinct(x[Company]), ", ")}})
in
    group

 

jennratten
Super User
Super User

Hello @ashameen01, you can achieve the desired result by grouping the rows by license and year, and then aggregating categories and companies by the groups.

let
    Source = Table.FromRows(Json.Document(Binary.Decompress(Binary.FromText("fZJBDsIgEEWvYrp2YaoXGIHSJgiEoolpumhMY1zYGuPG2wsuBHRw02n6mD//T+m6QlxO43Qai2VxHIe7K2S+3obp6d+Gx3ie78+iX7pzlrlP5aosXdlK4Z6c/hImmPBMcPELD4ygbO2KkTyHrCIsx/Z290exzLFWvwNoBAE+bOORpGAASe6hqvcG0/TM1BVNGAlLaSRNlkmClWrHsS6PJIh0XxFrQWOKWAJo6sgKUdZGAwP0qlqRL7aIwlOoEqsqqEJb55BkOodolWSIm5Q1WJc3yQ3IQ3rHVHDJofn89v4F", BinaryEncoding.Base64), Compression.Deflate)), let _t = ((type nullable text) meta [Serialized.Text = true]) in type table [#"(blank)" = _t, #"(blank).1" = _t, #"(blank).2" = _t, #"(blank).3" = _t]),
    #"Changed Type" = Table.TransformColumnTypes(Source,{{"(blank)", type text}, {"(blank).1", type text}, {"(blank).2", type text}, {"(blank).3", type text}}),
    #"Promoted Headers" = Table.PromoteHeaders(#"Changed Type", [PromoteAllScalars=true]),
    #"Changed Type1" = Table.TransformColumnTypes(#"Promoted Headers",{{"Licence", type text}, {"Year", Int64.Type}, {"Company", type text}, {"Category", type text}}),
    #"Grouped Rows" = Table.Group(#"Changed Type1", {"Licence", "Year"}, {{"GPL", each List.Count ( List.Select ( _[Category], each _ = "GPL" ) ), type number }, {"GD", each List.Count ( List.Select ( _[Category], each _ = "GD" ) ), type number}, {"LGL", each List.Count ( List.Select ( _[Category], each _ = "LGL" ) ), type number}, {"Companies", each Text.Combine ( _[Company], ", " ), type nullable text}})
in
    #"Grouped Rows"

jennratten_0-1717280932075.png

 

Many thanks, that worked, to get a wrap on the steps, so you grouped by "Licence" and "Year" without aggregation and added custom columns: " { {"GPL", each List.Count(List.Select(_[Category], each _ = "GPL")), type number}, {"GD", each List.Count(List.Select(_[Category], each _ = "GD")), type number}, {"LGL", each List.Count(List.Select(_[Category], each _ = "LGL")), type number}, {"Companies", each Text.Combine(_[Company], ", "), type nullable text} } )" to count categories and combined list of companies?

 

 

Yes, that's correct!  Please let me know if I can further assist with this.

 

If this helped you please consider clicking Accept as Solution.  

Helpful resources

Announcements
Power BI DataViz World Championships

Power BI Dataviz World Championships

The Power BI Data Visualization World Championships is back! Get ahead of the game and start preparing now!

November Power BI Update Carousel

Power BI Monthly Update - November 2025

Check out the November 2025 Power BI update to learn about new features.

FabCon Atlanta 2026 carousel

FabCon Atlanta 2026

Join us at FabCon Atlanta, March 16-20, for the ultimate Fabric, Power BI, AI and SQL community-led event. Save $200 with code FABCOMM.