Skip to main content
cancel
Showing results for 
Search instead for 
Did you mean: 

Find everything you need to get certified on Fabric—skills challenges, live sessions, exam prep, role guidance, and more. Get started

Reply
Jdiep
Helper I
Helper I

Survey Question & Answer from rows to column and rows

Hi all,

 

I am stuggling to figure out how to get my survey answers as preferred. I have two columns: Column1 is the question and Column2 is the answer. 

 

I want a table where the question is the columns and the answers are on the rows. So from example 1 to example 2. The steps have to work continiously since there will be more answers to the survey every day. The answer to Q1 is the identifier to make a relationship with another table.

 

Would love to hear your input/solution to this. If you need more info let me know, thanks in advance.

 

Regards,

Jur

 

Example1

Question;Answer
Q1;A1
Q2;A2
Q3;A3
Q4;A4
Q5;A5
Q6;A6
Q1;A7
Q2;A8
Q3;A9
Q4;A10
Q5;A11
Q6;A12
Q1;A13
Q2;A14
Q3;A15
Q4;A16
Q5;A17
Q6;A18

 

Example 2

Q1;Q2;Q3;Q4;Q5;Q6
A1;A2;A3;A4;A5;A6
A7;A8;A9;A10;A11;A12
A13;A14;A15;A16;A17;A18

1 ACCEPTED SOLUTION
Vijay_A_Verma
Super User
Super User

Open a blank query - Home - Advanced Editor - Remove everything from there and paste the below code to test (later on when you use the query on your dataset, you will have to change the source appropriately)

Solution using Transpose

let
    Source = Table.FromRows(Json.Document(Binary.Decompress(Binary.FromText("Tc6hEcAwDATBXoQN8pIlJzAlBHvcfxu2IvLs0M7NKR+kyQtZ7bRma7VlW3XP7tWe7dWRHdW/M8i5yXnIwUUQQBKUKBhZ6ITBWQvWBmtnYG0=", BinaryEncoding.Base64), Compression.Deflate)), let _t = ((type nullable text) meta [Serialized.Text = true]) in type table [Column1 = _t, Column2 = _t]),
    #"Grouped Rows" = Table.Group(Source, {"Column1"}, {{"Temp", each Text.Combine([Column2],";"), type nullable text}}),
    #"Split Column by Delimiter" = Table.SplitColumn(#"Grouped Rows", "Temp", Splitter.SplitTextByDelimiter(";", QuoteStyle.Csv), {"Temp.1", "Temp.2", "Temp.3"}),
    #"Transposed Table" = Table.Transpose(#"Split Column by Delimiter"),
    #"Promoted Headers" = Table.PromoteHeaders(#"Transposed Table", [PromoteAllScalars=true])
in
    #"Promoted Headers"

Solution using Pivots

 

let
    Source = Table.FromRows(Json.Document(Binary.Decompress(Binary.FromText("Tc6hEcAwDATBXoQN8pIlJzAlBHvcfxu2IvLs0M7NKR+kyQtZ7bRma7VlW3XP7tWe7dWRHdW/M8i5yXnIwUUQQBKUKBhZ6ITBWQvWBmtnYG0=", BinaryEncoding.Base64), Compression.Deflate)), let _t = ((type nullable text) meta [Serialized.Text = true]) in type table [Column1 = _t, Column2 = _t]),
    #"Added Index" = Table.AddIndexColumn(Source, "Index", 1, 1, Int64.Type),
    #"Inserted Division" = Table.AddColumn(#"Added Index", "Division", each [Index] / 6, type number),
    #"Inserted Round Up" = Table.AddColumn(#"Inserted Division", "Round Up", each Number.RoundUp([Division]), Int64.Type),
    #"Removed Columns" = Table.RemoveColumns(#"Inserted Round Up",{"Index", "Division"}),
    #"Pivoted Column" = Table.Pivot(#"Removed Columns", List.Distinct(#"Removed Columns"[Column1]), "Column1", "Column2"),
    #"Removed Columns1" = Table.RemoveColumns(#"Pivoted Column",{"Round Up"})
in
    #"Removed Columns1"

 

 

View solution in original post

2 REPLIES 2
Vijay_A_Verma
Super User
Super User

Open a blank query - Home - Advanced Editor - Remove everything from there and paste the below code to test (later on when you use the query on your dataset, you will have to change the source appropriately)

Solution using Transpose

let
    Source = Table.FromRows(Json.Document(Binary.Decompress(Binary.FromText("Tc6hEcAwDATBXoQN8pIlJzAlBHvcfxu2IvLs0M7NKR+kyQtZ7bRma7VlW3XP7tWe7dWRHdW/M8i5yXnIwUUQQBKUKBhZ6ITBWQvWBmtnYG0=", BinaryEncoding.Base64), Compression.Deflate)), let _t = ((type nullable text) meta [Serialized.Text = true]) in type table [Column1 = _t, Column2 = _t]),
    #"Grouped Rows" = Table.Group(Source, {"Column1"}, {{"Temp", each Text.Combine([Column2],";"), type nullable text}}),
    #"Split Column by Delimiter" = Table.SplitColumn(#"Grouped Rows", "Temp", Splitter.SplitTextByDelimiter(";", QuoteStyle.Csv), {"Temp.1", "Temp.2", "Temp.3"}),
    #"Transposed Table" = Table.Transpose(#"Split Column by Delimiter"),
    #"Promoted Headers" = Table.PromoteHeaders(#"Transposed Table", [PromoteAllScalars=true])
in
    #"Promoted Headers"

Solution using Pivots

 

let
    Source = Table.FromRows(Json.Document(Binary.Decompress(Binary.FromText("Tc6hEcAwDATBXoQN8pIlJzAlBHvcfxu2IvLs0M7NKR+kyQtZ7bRma7VlW3XP7tWe7dWRHdW/M8i5yXnIwUUQQBKUKBhZ6ITBWQvWBmtnYG0=", BinaryEncoding.Base64), Compression.Deflate)), let _t = ((type nullable text) meta [Serialized.Text = true]) in type table [Column1 = _t, Column2 = _t]),
    #"Added Index" = Table.AddIndexColumn(Source, "Index", 1, 1, Int64.Type),
    #"Inserted Division" = Table.AddColumn(#"Added Index", "Division", each [Index] / 6, type number),
    #"Inserted Round Up" = Table.AddColumn(#"Inserted Division", "Round Up", each Number.RoundUp([Division]), Int64.Type),
    #"Removed Columns" = Table.RemoveColumns(#"Inserted Round Up",{"Index", "Division"}),
    #"Pivoted Column" = Table.Pivot(#"Removed Columns", List.Distinct(#"Removed Columns"[Column1]), "Column1", "Column2"),
    #"Removed Columns1" = Table.RemoveColumns(#"Pivoted Column",{"Round Up"})
in
    #"Removed Columns1"

 

 

Hi Vijay,

 

Thank you so much. Been struggling, but you make it look easy 😉

 

Regards,

Jur

Helpful resources

Announcements
Europe Fabric Conference

Europe’s largest Microsoft Fabric Community Conference

Join the community in Stockholm for expert Microsoft Fabric learning including a very exciting keynote from Arun Ulag, Corporate Vice President, Azure Data.

AugPowerBI_Carousel

Power BI Monthly Update - August 2024

Check out the August 2024 Power BI update to learn about new features.

September Hackathon Carousel

Microsoft Fabric & AI Learning Hackathon

Learn from experts, get hands-on experience, and win awesome prizes.

Sept NL Carousel

Fabric Community Update - September 2024

Find out what's new and trending in the Fabric Community.

Top Solution Authors
Top Kudoed Authors