- Subscribe to RSS Feed
- Mark Topic as New
- Mark Topic as Read
- Float this Topic for Current User
- Bookmark
- Subscribe
- Printer Friendly Page

- Mark as New
- Bookmark
- Subscribe
- Mute
- Subscribe to RSS Feed
- Permalink
- Report Inappropriate Content

Power Query - Table. Group, Transformation with a dynamic number of Columns
Hello,
I am look for help to build a function that would transform a table as follow:
Group Name | Unit Number | PO Value | PO | Index |
NPP - Retail | 78NX8428 | 3600 | B00914311 | 1 |
PP1 - Retail | 78NX8417 | 3720 | B00914311 | 1 |
PP1 - Resi Pass | 78NX8415 | 3960 | B00920643 | 1 |
PP1 - Resi Pass | 78NX8414 | 1618 | B00920778 | 1 |
PP1 - Resi Pass | 78NX8414 | 24810 | B00913133 | 2 |
PP1 - Resi Pass | 78NX8414 | 13800 | B00914311 | 3 |
P0-1A - Hotel Passenger 3 | 78NX8396 | 3774 | B00920643 | 1 |
P0-1A - Hotel Passenger 2 | 78NX8395 | 21824 | B00914162 | 1 |
The second table is the result of a pivot column (Index) With the Min value of the Colum PO. - > That is not my problem
Group Name | Unit Number | PO Value | Invoiced | Unit Number | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |
NPP - Retail | 78NX8428 | 3600 | 0 | 78NX8428 | B00914311-12 | null | null | |||||||||||
P0-1A - Hotel Passenger 2 | 78NX8417 | 21824 | 0 | 78NX8395 | B00914162-02 | null | null | |||||||||||
P0-1A - Hotel Passenger 3 | 78NX8415 | 3774 | 0 | 78NX8396 | B00920643-05 | null | null | |||||||||||
PP1 - Resi Pass | 78NX8414 | 1618 | 0 | 78NX8414 | B00920778-18 | null | null | |||||||||||
PP1 - Resi Pass | 78NX8414 | 13800 | 0 | 78NX8414 | null | null | B00914311-01 | |||||||||||
PP1 - Resi Pass | 78NX8414 | 24810 | 0 | 78NX8414 | null | B00913133-01 | null | |||||||||||
PP1 - Resi Pass | 78NX8396 | 3960 | 0 | 78NX8415 | B00920643-19 | null | null | |||||||||||
PP1 - Retail | 78NX8395 | 3720 | 0 | 78NX8417 | B00914311-04 | null | null |
What I would like to achieve:
- Being Able to do a pivot base on the column index.
- Once the pivot done to Sum the colum PO Value & Invoiced.
Group Name | Unit Number | PO Value | Invoiced | Unit Number | 1 | 2 | 3 | 4 |
NPP - Retail | 78NX8428 | 3600 | 0 | 78NX8428 | B00914311-12 | null | null | |
P0-1A - Hotel Passenger 2 | 78NX8417 | 21824 | 0 | 78NX8395 | B00914162-02 | null | null | |
P0-1A - Hotel Passenger 3 | 78NX8415 | 3774 | 0 | 78NX8396 | B00920643-05 | null | null | |
PP1 - Resi Pass | 78NX8414 | 40228 | 0 | 78NX8414 | B00920778-18 | B00913133-01 | B00914311-01 | |
PP1 - Resi Pass | 78NX8396 | 3960 | 0 | 78NX8415 | B00920643-19 | null | ||
PP1 - Retail | 78NX8395 | 3720 | 0 | 78NX8417 | B00914311-04 | null | null |
My issue is that the number of columns can vary which make the command Table.Group Difficult
Thanks For Your help
Regards
Solved! Go to Solution.
- Mark as New
- Bookmark
- Subscribe
- Mute
- Subscribe to RSS Feed
- Permalink
- Report Inappropriate Content

It might be easier to get your sum before you pivot. I didn't see a Invoiced column, but here is how to do it with the PO Value column. To see how it works, just create a blank query, go to Advanced Editor, and replace the text there with the M code below.
let
Source = Table.FromRows(Json.Document(Binary.Decompress(Binary.FromText("jdC7CoMwFAbgVwmZFXIuTY5jnTpJ6FQQB4dQBGmh+v40UdTBXpxyhnzn8te1rrxXubqGse16nWkn1U0YJZZkjYlPaUwBTACxBt1ktfYe9gRcIg5/k6FTvh2GTZ2SKuyi0Fim/4rTFwuyKufkmEIWWFckoDQMDwwj2YVBMzM5nCO8PMfQTzI87uGlaGkQr5uScfz5xi8eN58yQhDkdQGwODdo3g==", BinaryEncoding.Base64), Compression.Deflate)), let _t = ((type nullable text) meta [Serialized.Text = true]) in type table [#"Group Name" = _t, #"Unit Number" = _t, #"PO Value" = _t, PO = _t, Index = _t]),
#"Changed Type" = Table.TransformColumnTypes(Source,{{"Group Name", type text}, {"Unit Number", type text}, {"PO Value", Int64.Type}, {"PO", type text}, {"Index", Int64.Type}}),
#"Grouped Rows" = Table.Group(#"Changed Type", {"Unit Number"}, {{"PO Sum", each List.Sum([PO Value]), type nullable number}, {"AllRows", each _, type table [Group Name=nullable text, Unit Number=nullable text, PO Value=nullable number, PO=nullable text, Index=nullable number]}}),
#"Expanded AllRows" = Table.ExpandTableColumn(#"Grouped Rows", "AllRows", {"Group Name", "PO", "Index"}, {"Group Name", "PO", "Index"}),
#"Pivoted Column" = Table.Pivot(Table.TransformColumnTypes(#"Expanded AllRows", {{"Index", type text}}, "en-US"), List.Distinct(Table.TransformColumnTypes(#"Expanded AllRows", {{"Index", type text}}, "en-US")[Index]), "Index", "PO", List.Min)
in
#"Pivoted Column"
If this works for you, please mark it as the solution. Kudos are appreciated too. Please let me know if not.
Regards,
Pat
Did I answer your question? Mark my post as a solution! Kudos are also appreciated!
To learn more about Power BI, follow me on Twitter or subscribe on YouTube.
@mahoneypa HoosierBI on YouTube

- Mark as New
- Bookmark
- Subscribe
- Mute
- Subscribe to RSS Feed
- Permalink
- Report Inappropriate Content

I have to admit I'm not sure I understand the description. I only rely on the expected table that you have shown. I added the fancy Invoiced column to the input table.
Maybe the following code can be useful as a starting point ...
let
Source = Table.FromRows(Json.Document(Binary.Decompress(Binary.FromText("jZA/C4MwEMW/imRWyP0xiWM7dZLQqSAODlIEaaH6/WkuVqWWti7JDfd7996rKlV6n2TJuR2brlepsq68OEYXRjJahw8AwnvUugCmOIOq00p5D58gWAEtCoiIP8GhS3wzDCubC1sYYYleKGrD9B9lWTEgtpl5Ya11+1hkB3I3z/PZM0E0gTsOk4tNGWM2gWmCdQaHgJ/uY9tHvr1d20dCs0wIHWuz/FbbJvsXFVxVxDuCQ5EhXpIwGJxk6ic=", BinaryEncoding.Base64), Compression.Deflate)), let _t = ((type text) meta [Serialized.Text = true]) in type table [#"Group Name" = _t, #"Unit Number" = _t, #"PO Value" = _t, Invoiced = _t, PO = _t, Index = _t]),
#"Changed Type" = Table.TransformColumnTypes(Source,{{"Group Name", type text}, {"Unit Number", type text}, {"PO Value", Int64.Type}, {"Invoiced", Int64.Type}, {"PO", type text}, {"Index", Int64.Type}}),
#"Grouped Rows" = Table.Group(#"Changed Type", {"Group Name"}, {{"sum", each List.Sum([PO Value]&[Invoiced]), type number}, {"all", each _, type table [Group Name=text, Unit Number=text, PO Value=number, Invoiced=number, PO=text, Index=number]}}),
#"Expanded all" = Table.ExpandTableColumn(#"Grouped Rows", "all", {"Unit Number", "PO", "Index"}, {"all.Unit Number", "all.PO", "all.Index"}),
#"Pivoted Column" = Table.Pivot(Table.TransformColumnTypes(#"Expanded all", {{"all.Index", type text}}, "it-IT"), List.Distinct(Table.TransformColumnTypes(#"Expanded all", {{"all.Index", type text}}, "it-IT")[all.Index]), "all.Index", "all.PO")
in
#"Pivoted Column"

- Mark as New
- Bookmark
- Subscribe
- Mute
- Subscribe to RSS Feed
- Permalink
- Report Inappropriate Content

I have to admit I'm not sure I understand the description. I only rely on the expected table that you have shown. I added the fancy Invoiced column to the input table.
Maybe the following code can be useful as a starting point ...
let
Source = Table.FromRows(Json.Document(Binary.Decompress(Binary.FromText("jZA/C4MwEMW/imRWyP0xiWM7dZLQqSAODlIEaaH6/WkuVqWWti7JDfd7996rKlV6n2TJuR2brlepsq68OEYXRjJahw8AwnvUugCmOIOq00p5D58gWAEtCoiIP8GhS3wzDCubC1sYYYleKGrD9B9lWTEgtpl5Ya11+1hkB3I3z/PZM0E0gTsOk4tNGWM2gWmCdQaHgJ/uY9tHvr1d20dCs0wIHWuz/FbbJvsXFVxVxDuCQ5EhXpIwGJxk6ic=", BinaryEncoding.Base64), Compression.Deflate)), let _t = ((type text) meta [Serialized.Text = true]) in type table [#"Group Name" = _t, #"Unit Number" = _t, #"PO Value" = _t, Invoiced = _t, PO = _t, Index = _t]),
#"Changed Type" = Table.TransformColumnTypes(Source,{{"Group Name", type text}, {"Unit Number", type text}, {"PO Value", Int64.Type}, {"Invoiced", Int64.Type}, {"PO", type text}, {"Index", Int64.Type}}),
#"Grouped Rows" = Table.Group(#"Changed Type", {"Group Name"}, {{"sum", each List.Sum([PO Value]&[Invoiced]), type number}, {"all", each _, type table [Group Name=text, Unit Number=text, PO Value=number, Invoiced=number, PO=text, Index=number]}}),
#"Expanded all" = Table.ExpandTableColumn(#"Grouped Rows", "all", {"Unit Number", "PO", "Index"}, {"all.Unit Number", "all.PO", "all.Index"}),
#"Pivoted Column" = Table.Pivot(Table.TransformColumnTypes(#"Expanded all", {{"all.Index", type text}}, "it-IT"), List.Distinct(Table.TransformColumnTypes(#"Expanded all", {{"all.Index", type text}}, "it-IT")[all.Index]), "all.Index", "all.PO")
in
#"Pivoted Column"
- Mark as New
- Bookmark
- Subscribe
- Mute
- Subscribe to RSS Feed
- Permalink
- Report Inappropriate Content

It might be easier to get your sum before you pivot. I didn't see a Invoiced column, but here is how to do it with the PO Value column. To see how it works, just create a blank query, go to Advanced Editor, and replace the text there with the M code below.
let
Source = Table.FromRows(Json.Document(Binary.Decompress(Binary.FromText("jdC7CoMwFAbgVwmZFXIuTY5jnTpJ6FQQB4dQBGmh+v40UdTBXpxyhnzn8te1rrxXubqGse16nWkn1U0YJZZkjYlPaUwBTACxBt1ktfYe9gRcIg5/k6FTvh2GTZ2SKuyi0Fim/4rTFwuyKufkmEIWWFckoDQMDwwj2YVBMzM5nCO8PMfQTzI87uGlaGkQr5uScfz5xi8eN58yQhDkdQGwODdo3g==", BinaryEncoding.Base64), Compression.Deflate)), let _t = ((type nullable text) meta [Serialized.Text = true]) in type table [#"Group Name" = _t, #"Unit Number" = _t, #"PO Value" = _t, PO = _t, Index = _t]),
#"Changed Type" = Table.TransformColumnTypes(Source,{{"Group Name", type text}, {"Unit Number", type text}, {"PO Value", Int64.Type}, {"PO", type text}, {"Index", Int64.Type}}),
#"Grouped Rows" = Table.Group(#"Changed Type", {"Unit Number"}, {{"PO Sum", each List.Sum([PO Value]), type nullable number}, {"AllRows", each _, type table [Group Name=nullable text, Unit Number=nullable text, PO Value=nullable number, PO=nullable text, Index=nullable number]}}),
#"Expanded AllRows" = Table.ExpandTableColumn(#"Grouped Rows", "AllRows", {"Group Name", "PO", "Index"}, {"Group Name", "PO", "Index"}),
#"Pivoted Column" = Table.Pivot(Table.TransformColumnTypes(#"Expanded AllRows", {{"Index", type text}}, "en-US"), List.Distinct(Table.TransformColumnTypes(#"Expanded AllRows", {{"Index", type text}}, "en-US")[Index]), "Index", "PO", List.Min)
in
#"Pivoted Column"
If this works for you, please mark it as the solution. Kudos are appreciated too. Please let me know if not.
Regards,
Pat
Did I answer your question? Mark my post as a solution! Kudos are also appreciated!
To learn more about Power BI, follow me on Twitter or subscribe on YouTube.
@mahoneypa HoosierBI on YouTube

Helpful resources
Subject | Author | Posted | |
---|---|---|---|
07-01-2024 06:44 PM | |||
04-25-2024 07:02 AM | |||
Anonymous
| 01-12-2024 02:28 PM | ||
07-08-2024 11:25 PM | |||
07-27-2023 05:31 AM |
User | Count |
---|---|
33 | |
18 | |
14 | |
11 | |
10 |