Share feedback directly with Fabric product managers, participate in targeted research studies and influence the Fabric roadmap.
Sign up nowGet Fabric certified for FREE! Don't miss your chance! Learn more
Hello, I have a table with the following informations, the column unique_id is just the merge of scenario & year:
| Period | Amount | scenario | year | unique_id |
| 202001 | 100 | FCT1 | 2020 | FCT12020 |
| 202101 | 150 | FCT1 | 2021 | FCT12021 |
| 202002 | 300 | FCT1 | 2020 | FCT12020 |
| 202103 | 400 | FCT1 | 2021 | FCT12021 |
| 202001 | 250 | FCT2 | 2020 | FCT22020 |
| 202101 | 120 | FCT2 | 2021 | FCT22021 |
| 202002 | 485 | FCT2 | 2020 | FCT22020 |
| 202103 | 695 | FCT2 | 2021 | FCT22021 |
I would like to identify the rows for each unique_id where the biggest period.
| Period | Amount | scenario | year | unique_id | Check |
| 202001 | 100 | FCT1 | 2020 | FCT12020 | FALSE |
| 202101 | 150 | FCT1 | 2021 | FCT12021 | FALSE |
| 202002 | 300 | FCT1 | 2020 | FCT12020 | TRUE |
| 202103 | 400 | FCT1 | 2021 | FCT12021 | TRUE |
| 202001 | 250 | FCT2 | 2020 | FCT22020 | FALSE |
| 202101 | 120 | FCT2 | 2021 | FCT22021 | FALSE |
| 202002 | 485 | FCT2 | 2020 | FCT22020 | TRUE |
| 202103 | 695 | FCT2 | 2021 | FCT22021 | TRUE |
To end up with the following table
| Period | Amount | scenario | year | unique_id |
| 202002 | 300 | FCT1 | 2020 | FCT12020 |
| 202103 | 400 | FCT1 | 2021 | FCT12021 |
| 202002 | 485 | FCT2 | 2020 | FCT22020 |
| 202103 | 695 | FCT2 | 2021 | FCT22021 |
Thanks!
Solved! Go to Solution.
Paste the code below into a blank query.
Read the comments and explore the Applied Steps to understand the algorithm.
let
Source = Table.FromRows(Json.Document(Binary.Decompress(Binary.FromText("i45WMjIwMjAwVNJRMjQwAJJuziEgDkgUygMzY3XAKg0hKk1RVRoiVBrCVBoYGAFFjYky0xgoamJAjJlgSZjtRihmGmFxpxGqSkOESjR3mliYEmEmyJ1mlqZ4zIwFAA==", BinaryEncoding.Base64), Compression.Deflate)), let _t = ((type nullable text) meta [Serialized.Text = true]) in type table [Period = _t, Amount = _t, scenario = _t, year = _t, unique_id = _t]),
#"Changed Type" = Table.TransformColumnTypes(Source,{{"Period", Int64.Type}, {"Amount", Int64.Type}, {"scenario", type text}, {"year", Int64.Type}, {"unique_id", type text}}),
//group by unique id
// then Select the row with the maximum Amount
#"Grouped Rows" = Table.Group(#"Changed Type", {"unique_id"}, {
{"Amount", (t)=>Table.SelectRows(t, each [Amount]=List.Max(t[Amount])),
type table[Period=Int64.Type, Amount=number, scenario=text,year=Int64.Type]}
}),
//Expand the subtables
#"Expanded Amount" = Table.ExpandTableColumn(#"Grouped Rows", "Amount",
{"Period", "Amount", "scenario", "year"},
{"Period", "Amount", "scenario", "year"}),
//Return columns to original order
#"Reordered Columns" = Table.ReorderColumns(#"Expanded Amount",Table.ColumnNames(Source))
in
#"Reordered Columns"
Data
Results
Paste the code below into a blank query.
Read the comments and explore the Applied Steps to understand the algorithm.
let
Source = Table.FromRows(Json.Document(Binary.Decompress(Binary.FromText("i45WMjIwMjAwVNJRMjQwAJJuziEgDkgUygMzY3XAKg0hKk1RVRoiVBrCVBoYGAFFjYky0xgoamJAjJlgSZjtRihmGmFxpxGqSkOESjR3mliYEmEmyJ1mlqZ4zIwFAA==", BinaryEncoding.Base64), Compression.Deflate)), let _t = ((type nullable text) meta [Serialized.Text = true]) in type table [Period = _t, Amount = _t, scenario = _t, year = _t, unique_id = _t]),
#"Changed Type" = Table.TransformColumnTypes(Source,{{"Period", Int64.Type}, {"Amount", Int64.Type}, {"scenario", type text}, {"year", Int64.Type}, {"unique_id", type text}}),
//group by unique id
// then Select the row with the maximum Amount
#"Grouped Rows" = Table.Group(#"Changed Type", {"unique_id"}, {
{"Amount", (t)=>Table.SelectRows(t, each [Amount]=List.Max(t[Amount])),
type table[Period=Int64.Type, Amount=number, scenario=text,year=Int64.Type]}
}),
//Expand the subtables
#"Expanded Amount" = Table.ExpandTableColumn(#"Grouped Rows", "Amount",
{"Period", "Amount", "scenario", "year"},
{"Period", "Amount", "scenario", "year"}),
//Return columns to original order
#"Reordered Columns" = Table.ReorderColumns(#"Expanded Amount",Table.ColumnNames(Source))
in
#"Reordered Columns"
Data
Results
THanks!
Share feedback directly with Fabric product managers, participate in targeted research studies and influence the Fabric roadmap.
| User | Count |
|---|---|
| 7 | |
| 4 | |
| 4 | |
| 3 | |
| 3 |
| User | Count |
|---|---|
| 11 | |
| 11 | |
| 10 | |
| 7 | |
| 6 |