Join us at FabCon Atlanta from March 16 - 20, 2026, for the ultimate Fabric, Power BI, AI and SQL community-led event. Save $200 with code FABCOMM.
Register now!The Power BI Data Visualization World Championships is back! It's time to submit your entry. Live now!
Hello, I have a table with the following informations, the column unique_id is just the merge of scenario & year:
| Period | Amount | scenario | year | unique_id |
| 202001 | 100 | FCT1 | 2020 | FCT12020 |
| 202101 | 150 | FCT1 | 2021 | FCT12021 |
| 202002 | 300 | FCT1 | 2020 | FCT12020 |
| 202103 | 400 | FCT1 | 2021 | FCT12021 |
| 202001 | 250 | FCT2 | 2020 | FCT22020 |
| 202101 | 120 | FCT2 | 2021 | FCT22021 |
| 202002 | 485 | FCT2 | 2020 | FCT22020 |
| 202103 | 695 | FCT2 | 2021 | FCT22021 |
I would like to identify the rows for each unique_id where the biggest period.
| Period | Amount | scenario | year | unique_id | Check |
| 202001 | 100 | FCT1 | 2020 | FCT12020 | FALSE |
| 202101 | 150 | FCT1 | 2021 | FCT12021 | FALSE |
| 202002 | 300 | FCT1 | 2020 | FCT12020 | TRUE |
| 202103 | 400 | FCT1 | 2021 | FCT12021 | TRUE |
| 202001 | 250 | FCT2 | 2020 | FCT22020 | FALSE |
| 202101 | 120 | FCT2 | 2021 | FCT22021 | FALSE |
| 202002 | 485 | FCT2 | 2020 | FCT22020 | TRUE |
| 202103 | 695 | FCT2 | 2021 | FCT22021 | TRUE |
To end up with the following table
| Period | Amount | scenario | year | unique_id |
| 202002 | 300 | FCT1 | 2020 | FCT12020 |
| 202103 | 400 | FCT1 | 2021 | FCT12021 |
| 202002 | 485 | FCT2 | 2020 | FCT22020 |
| 202103 | 695 | FCT2 | 2021 | FCT22021 |
Thanks!
Solved! Go to Solution.
Paste the code below into a blank query.
Read the comments and explore the Applied Steps to understand the algorithm.
let
Source = Table.FromRows(Json.Document(Binary.Decompress(Binary.FromText("i45WMjIwMjAwVNJRMjQwAJJuziEgDkgUygMzY3XAKg0hKk1RVRoiVBrCVBoYGAFFjYky0xgoamJAjJlgSZjtRihmGmFxpxGqSkOESjR3mliYEmEmyJ1mlqZ4zIwFAA==", BinaryEncoding.Base64), Compression.Deflate)), let _t = ((type nullable text) meta [Serialized.Text = true]) in type table [Period = _t, Amount = _t, scenario = _t, year = _t, unique_id = _t]),
#"Changed Type" = Table.TransformColumnTypes(Source,{{"Period", Int64.Type}, {"Amount", Int64.Type}, {"scenario", type text}, {"year", Int64.Type}, {"unique_id", type text}}),
//group by unique id
// then Select the row with the maximum Amount
#"Grouped Rows" = Table.Group(#"Changed Type", {"unique_id"}, {
{"Amount", (t)=>Table.SelectRows(t, each [Amount]=List.Max(t[Amount])),
type table[Period=Int64.Type, Amount=number, scenario=text,year=Int64.Type]}
}),
//Expand the subtables
#"Expanded Amount" = Table.ExpandTableColumn(#"Grouped Rows", "Amount",
{"Period", "Amount", "scenario", "year"},
{"Period", "Amount", "scenario", "year"}),
//Return columns to original order
#"Reordered Columns" = Table.ReorderColumns(#"Expanded Amount",Table.ColumnNames(Source))
in
#"Reordered Columns"
Data
Results
Paste the code below into a blank query.
Read the comments and explore the Applied Steps to understand the algorithm.
let
Source = Table.FromRows(Json.Document(Binary.Decompress(Binary.FromText("i45WMjIwMjAwVNJRMjQwAJJuziEgDkgUygMzY3XAKg0hKk1RVRoiVBrCVBoYGAFFjYky0xgoamJAjJlgSZjtRihmGmFxpxGqSkOESjR3mliYEmEmyJ1mlqZ4zIwFAA==", BinaryEncoding.Base64), Compression.Deflate)), let _t = ((type nullable text) meta [Serialized.Text = true]) in type table [Period = _t, Amount = _t, scenario = _t, year = _t, unique_id = _t]),
#"Changed Type" = Table.TransformColumnTypes(Source,{{"Period", Int64.Type}, {"Amount", Int64.Type}, {"scenario", type text}, {"year", Int64.Type}, {"unique_id", type text}}),
//group by unique id
// then Select the row with the maximum Amount
#"Grouped Rows" = Table.Group(#"Changed Type", {"unique_id"}, {
{"Amount", (t)=>Table.SelectRows(t, each [Amount]=List.Max(t[Amount])),
type table[Period=Int64.Type, Amount=number, scenario=text,year=Int64.Type]}
}),
//Expand the subtables
#"Expanded Amount" = Table.ExpandTableColumn(#"Grouped Rows", "Amount",
{"Period", "Amount", "scenario", "year"},
{"Period", "Amount", "scenario", "year"}),
//Return columns to original order
#"Reordered Columns" = Table.ReorderColumns(#"Expanded Amount",Table.ColumnNames(Source))
in
#"Reordered Columns"
Data
Results
THanks!
The Power BI Data Visualization World Championships is back! It's time to submit your entry.
Check out the January 2026 Power BI update to learn about new features.
| User | Count |
|---|---|
| 16 | |
| 14 | |
| 9 | |
| 8 | |
| 7 |