Join us at FabCon Atlanta from March 16 - 20, 2026, for the ultimate Fabric, Power BI, AI and SQL community-led event. Save $200 with code FABCOMM.
Register now!The Power BI Data Visualization World Championships is back! Get ahead of the game and start preparing now! Learn more
How would I convert this table 1 below using m code
table 1
| NRM Code | Version Date | Vol (Sum) |
| 02.01.04.01 | 17/01/2023 | 636.8166937 |
| 01.01.02.12 | 17/01/2023 | 730.9046459 |
| 02.02.01.01 | 17/01/2023 | 7098.979422 |
| 02.03.01.04 | 17/01/2023 | 2547.531327 |
| 01.01.02.13 | 17/01/2023 | 133.2549991 |
| 02.01.04.02 | 17/01/2023 | 1830.027974 |
| 02.01.04.03 | 17/01/2023 | 2108.871048 |
| 01.01.02.04 | 17/01/2023 | 5486.499548 |
| 01.01.05.01 | 17/01/2023 | 1898.504378 |
| 01.01.03.01 | 17/01/2023 | 6038.022427 |
| 01.01.05.06 | 17/01/2023 | 10090.45564 |
| 01.01.05.18 | 17/01/2023 | 1188.122389 |
| 02.04.01.01 | 17/01/2023 | 34.45970414 |
| 99.00.01.88 | 17/01/2023 | 0 |
| 02.01.01.01 | 17/01/2023 | 49.84026733 |
| 02.01.05.01 | 17/01/2023 | 41.22312498 |
| 02.01.04.01 | 25/01/2023 | 291.1472298 |
| 01.01.02.12 | 25/01/2023 | 724.7269464 |
| 02.02.01.01 | 25/01/2023 | 1918.890891 |
| 02.03.01.04 | 25/01/2023 | 839.113819 |
| 01.01.02.13 | 25/01/2023 | 132.4549991 |
| 02.01.04.02 | 25/01/2023 | 892.1064457 |
| 02.01.04.03 | 25/01/2023 | 729.7111469 |
| 01.01.02.04 | 25/01/2023 | 2497.379227 |
| 99.00.01.88 | 25/01/2023 | 0 |
| 01.01.05.01 | 25/01/2023 | 196.5305659 |
| 01.01.03.01 | 25/01/2023 | 432.447384 |
| 01.01.05.06 | 25/01/2023 | 1217.279487 |
| 01.01.05.18 | 25/01/2023 | 201.7811789 |
| 02.04.01.01 | 25/01/2023 | 37.79873231 |
| 02.01.01.01 | 25/01/2023 | 5.0163181 |
| 02.01.05.01 | 25/01/2023 | 20.4010378 |
| 02.01.04.01 | 07/02/2023 | 290.8027298 |
| 01.01.02.12 | 07/02/2023 | 724.7269464 |
| 02.02.01.01 | 07/02/2023 | 1918.890891 |
| 02.03.01.04 | 07/02/2023 | 839.113819 |
| 01.01.02.13 | 07/02/2023 | 132.4549991 |
| 02.01.04.02 | 07/02/2023 | 892.1064461 |
| 02.01.04.03 | 07/02/2023 | 726.7576776 |
| 01.01.02.04 | 07/02/2023 | 2497.379227 |
| 99.00.01.88 | 07/02/2023 | 0 |
| 01.01.05.01 | 07/02/2023 | 196.5305659 |
| 01.01.03.01 | 07/02/2023 | 432.447384 |
| 01.01.05.06 | 07/02/2023 | 1217.279487 |
| 01.01.05.18 | 07/02/2023 | 201.7811789 |
| 02.04.01.01 | 07/02/2023 | 37.79873231 |
| 02.01.01.01 | 07/02/2023 | 5.016318065 |
| 02.01.05.01 | 07/02/2023 | 20.40528602 |
To table 2
| NRM Code | 17/01/2023 | 25/01/2023 | 07/02/2023 |
| 02.01.04.01 | 636.81669 | 291.14723 | 290.80273 |
| 01.01.02.12 | 730.90465 | 724.72695 | 724.72695 |
| 02.02.01.01 | 7098.9794 | 1918.8909 | 1918.8909 |
| 02.03.01.04 | 2547.5313 | 839.11382 | 839.11382 |
| 01.01.02.13 | 133.255 | 132.455 | 132.455 |
| 02.01.04.02 | 1830.028 | 892.10645 | 892.10645 |
| 02.01.04.03 | 2108.871 | 729.71115 | 726.75768 |
| 01.01.02.04 | 5486.4995 | 2497.3792 | 2497.3792 |
| 01.01.05.01 | 1898.5044 | 0 | 0 |
| 01.01.03.01 | 6038.0224 | 196.53057 | 196.53057 |
| 01.01.05.06 | 10090.456 | 432.44738 | 432.44738 |
| 01.01.05.18 | 1188.1224 | 1217.2795 | 1217.2795 |
| 02.04.01.01 | 34.459704 | 201.78118 | 201.78118 |
| 99.00.01.88 | 0 | 37.798732 | 37.798732 |
| 02.01.01.01 | 49.840267 | 5.0163181 | 5.0163181 |
| 02.01.05.01 | 41.223125 | 20.401038 | 20.405286 |
The items in the second table is the volume
Solved! Go to Solution.
Select your version date > Pivot column
Select your volume as values and hit Ok.
Thanks all pivot worked
Hey @JL0101 ,
Copy the following code in Advanced editor:-
let
Source = Table.FromRows(Json.Document(Binary.Decompress(Binary.FromText("fZRZbuswDEX3ku+C5SQOaymy/208pmnTUObTjwHDB1ccjvz1dUMGJECt5+3jRv6J9MnIUi8mBkFmKX67fxRK3ygD8Y66ICSq6conyvATfEl1zID0VOYXKs8adpSXOiwh4b0A2VESgcIzk16pz7YutVJUscierht6SWXCgHBCjV7AtdalYVDnr46uYQIUNYGFKt5QmVaAEnUea59ApdolFTERdC3TjlJcUIqoJbLE37Z03pZoRaaj0jM1ExAfaFxS8X2aU5YmhCKbi7yj04iUoMoj1oxtR/TtxfuOkoDUmTMGSxvqrOBsqaaDpQ2lpNp8Yrz59GdpQ0MSiCQoB0l7qHBN83+S9tCsADTV5YOkW1cJTkRqOUjaZ6XpIJ78o1PfZkNxsHibkNXdxGUrB4sbqo++1SV0kLiHMjnU1dTwQeLeS33wIPJR4oaKg2e4lFGDow19dGpCQYOh2/GgSPi6w01QLJf5T1CEqP/NLGhDz4I29CxoQ4+C9tCjoD30V1Db0UtqdQS+3NxtELTP6ihoQydBtwmdBG3oUdAeehS093IUtKFnQRv6KyjaGhTdCihFF4fV9u73fw==", BinaryEncoding.Base64), Compression.Deflate)), let _t = ((type nullable text) meta [Serialized.Text = true]) in type table [#"NRM Code " = _t, #"Version Date " = _t, #"Vol (Sum) " = _t]),
#"Changed Type" = Table.TransformColumnTypes(Source,{{"NRM Code ", type text}, {"Version Date ", type text}, {"Vol (Sum) ", type number}}),
#"Pivoted Column" = Table.Pivot(#"Changed Type", List.Distinct(#"Changed Type"[#"Version Date "]), "Version Date ", "Vol (Sum) ", List.Sum)
in
#"Pivoted Column"
-If you get the output, then mark my post as solutions.
When I carryout the pivot function it works if I limit the row number to 150 but for the acctualy size of the table I get the following error
Expression.Error: There were too many elements in the enumeration to complete the operation.
Details:
[List]
Are you certain you are using "Sum" for the Pivot Aggregation as shown in the screenshot?
Select your version date > Pivot column
Select your volume as values and hit Ok.
It looks like a pivot. But your numbers don't add up. What algorithm are you using to obtain the values in Table 2 from the data in Table1?
eg. in Table 1 NRM 1.1.2.12 on 17/01/2023 has a value of 730.9. But in your table 2, it shows 1563.41
Ah yes I have corrected that now they should be the same.
The Power BI Data Visualization World Championships is back! Get ahead of the game and start preparing now!
Check out the November 2025 Power BI update to learn about new features.
| User | Count |
|---|---|
| 10 | |
| 6 | |
| 5 | |
| 4 | |
| 2 |