cancel
Showing results for 
Search instead for 
Did you mean: 

Fabric is Generally Available. Browse Fabric Presentations. Work towards your Fabric certification with the Cloud Skills Challenge.

Reply
ramzez
Frequent Visitor

Help needed with creating SelectRows and Group function

Hi,

 

I need help with creating a function. 

 

This is my sample data:

 

session_startsession_userDaily_sum
9/20/2023Person 14
9/22/2023Person 15
9/25/2023Person 18
9/23/2023Person 23
9/25/2023Person 25
9/26/2023Person 24
9/27/2023Person 27

 

I need to find out the session_start date when the sum of each of the session_user goes below 10, calculated backwards from today.
In the sample data calculated from today (9/28/2023) backwards for Person 1 the date when the sum of Daily_sum values goes below 10 is 9/23/2023 (because 9/22/2023 adds 5)  and Person 2's 9/27/2023 (because 9/26/2023 adds 4). I also need to be able to set how many days into the past the data is calculated.

I figured that I need to make the following two steps multiple times. First select the data that are in the past n days: (here 10 days) Table.SelectRows(Source, each Date.IsInPreviousNDays([session_start], 10)).


Then group those by "session_user":
Table.Group(Custom, {"session_user"}, {{"Sum", each List.Sum([Daily_sum]), type nullable number}}).

 

Then I need to select the rows from the data that are in the past n - 1 days. Then group those by "session_user" and so on until today.

 

I was able to create a custom function that finds the value how many loops it takes for any of the values for session_users is below 10.

 

Here is the function:

let
  Source = Table.FromRows(Json.Document(Binary.Decompress(Binary.FromText("i45WKk4tLs7Mz4svLkksKlHSgfNLi1OLgFyXxMycyvji0lylWJ1oJUt9IwMgMjIGygSkFhXn5ykYApkmMEkjLJKmMElTLJIWMEljNEkjINMYl04jZGPNsEjCHWSORdJcKTYWAA==", BinaryEncoding.Base64), Compression.Deflate)), let _t = ((type nullable text) meta [Serialized.Text = true]) in type table [Column1 = _t, Column2 = _t, Column3 = _t]),
  #"Promoted headers" = Table.PromoteHeaders(Source, [PromoteAllScalars = true]),
  #"Changed column type" = Table.TransformColumnTypes(#"Promoted headers", {{"session_start", type date}, {"session_user", type text}, {"Daily_sum", Int64.Type}}),


    CustomFunction = (n as number) as table =>
        let
            FilteredRows = Table.SelectRows(#"Changed column type", each Date.IsInPreviousNDays([session_start], n)),
            GroupedRows = Table.Group(FilteredRows, {"session_user"}, {{"Sum", each List.Sum([Daily_sum]), type nullable number}}),
            Result = if List.Min(GroupedRows[Sum]) < 10 then Table.AddColumn(GroupedRows, "Final N Value", each n) else @CustomFunction(n-1)
        in
            Result,
    FinalResult =
CustomFunction(10)
in
    FinalResult

 

 

 

 Here is the result at the moment:

ramzez_0-1695891576947.png

 

The function has stopped because Person 1's sum is less than 10 but at the same time I need to find out when Person 2's sum goes below 10.

 

How can I achieve this?

1 ACCEPTED SOLUTION

Thank you for the reply!

I only want to take into account past days and not today so Date.IsInPreviousNDays should serve my purpose.

 

I've been able to refine my function as follows:

let
  Source = Table.FromRows(Json.Document(Binary.Decompress(Binary.FromText("i45WKk4tLs7Mz4svLkksKlHSgfNLi1OLgFyXxMycyvji0lylWJ1oJUt9IwMgMjIGygSkFhXn5ykYApkmMEkjLJKmMElTLJIWMEljNEkjINMYl04jZGPNsEjCHWSORdJcKTYWAA==", BinaryEncoding.Base64), Compression.Deflate)), let _t = ((type nullable text) meta [Serialized.Text = true]) in type table [Column1 = _t, Column2 = _t, Column3 = _t]),
  #"Promoted headers" = 
Table.PromoteHeaders(Source, [PromoteAllScalars = true]),
  #"Changed column type" = Table.TransformColumnTypes(#"Promoted headers", {{"session_start", type date}, {"session_user", type text}, {"Daily_sum", Int64.Type}}),

    CustomFunction = (n as number, user as text, initialN as number) as table =>
    let
      FilteredRows = Table.SelectRows(#"Changed column type", each [session_user] = user and Date.IsInPreviousNDays([session_start], n)),
      GroupedRows = Table.Group(FilteredRows, {"session_user"}, {{"Sum", each List.Sum([Daily_sum]), type nullable number}}),
      Result = if Table.IsEmpty(GroupedRows) or List.Min(GroupedRows[Sum]) < 10 then Table.AddColumn(Table.AddColumn(GroupedRows, "Final N Value", each n), "First Try", each n = initialN) else @CustomFunction(n-1, user, initialN)
    in
      Result,

  Users = List.Distinct(#"Changed column type"[session_user]),
  DaysToFetch = 60,
  FinalResult = Table.FromRecords(List.Combine(List.Transform(Users, each Table.ToRecords(CustomFunction(DaysToFetch, _, DaysToFetch))))),
  Custom = Table.AddColumn(FinalResult, "Custom", each Date.AddDays( Date.From(DateTime.FixedLocalNow()),-[Final N Value]), type date),
  #"Custom 1" = 
Table.AddColumn(#"Custom", "not_valid_anymore", each Date.AddDays( Date.From(DateTime.FixedLocalNow()), if [First Try] = true then 0 else DaysToFetch - [Final N Value]), type date)
in
  #"Custom 1"

This pretty much gets me what I need.

View solution in original post

2 REPLIES 2
lbendlin
Super User
Super User

Danger Danger Danger.  

 

Date.IsInPreviousNDays  does not include Today !!! 

 

Use a different function.

 

You also will want to group by person a lot earlier.

Thank you for the reply!

I only want to take into account past days and not today so Date.IsInPreviousNDays should serve my purpose.

 

I've been able to refine my function as follows:

let
  Source = Table.FromRows(Json.Document(Binary.Decompress(Binary.FromText("i45WKk4tLs7Mz4svLkksKlHSgfNLi1OLgFyXxMycyvji0lylWJ1oJUt9IwMgMjIGygSkFhXn5ykYApkmMEkjLJKmMElTLJIWMEljNEkjINMYl04jZGPNsEjCHWSORdJcKTYWAA==", BinaryEncoding.Base64), Compression.Deflate)), let _t = ((type nullable text) meta [Serialized.Text = true]) in type table [Column1 = _t, Column2 = _t, Column3 = _t]),
  #"Promoted headers" = 
Table.PromoteHeaders(Source, [PromoteAllScalars = true]),
  #"Changed column type" = Table.TransformColumnTypes(#"Promoted headers", {{"session_start", type date}, {"session_user", type text}, {"Daily_sum", Int64.Type}}),

    CustomFunction = (n as number, user as text, initialN as number) as table =>
    let
      FilteredRows = Table.SelectRows(#"Changed column type", each [session_user] = user and Date.IsInPreviousNDays([session_start], n)),
      GroupedRows = Table.Group(FilteredRows, {"session_user"}, {{"Sum", each List.Sum([Daily_sum]), type nullable number}}),
      Result = if Table.IsEmpty(GroupedRows) or List.Min(GroupedRows[Sum]) < 10 then Table.AddColumn(Table.AddColumn(GroupedRows, "Final N Value", each n), "First Try", each n = initialN) else @CustomFunction(n-1, user, initialN)
    in
      Result,

  Users = List.Distinct(#"Changed column type"[session_user]),
  DaysToFetch = 60,
  FinalResult = Table.FromRecords(List.Combine(List.Transform(Users, each Table.ToRecords(CustomFunction(DaysToFetch, _, DaysToFetch))))),
  Custom = Table.AddColumn(FinalResult, "Custom", each Date.AddDays( Date.From(DateTime.FixedLocalNow()),-[Final N Value]), type date),
  #"Custom 1" = 
Table.AddColumn(#"Custom", "not_valid_anymore", each Date.AddDays( Date.From(DateTime.FixedLocalNow()), if [First Try] = true then 0 else DaysToFetch - [Final N Value]), type date)
in
  #"Custom 1"

This pretty much gets me what I need.

Helpful resources

Announcements
PBI November 2023 Update Carousel

Power BI Monthly Update - November 2023

Check out the November 2023 Power BI update to learn about new features.

Community News

Fabric Community News unified experience

Read the latest Fabric Community announcements, including updates on Power BI, Synapse, Data Factory and Data Activator.

Dashboard in a day with date

Exclusive opportunity for Women!

Join us for a free, hands-on Microsoft workshop led by women trainers for women where you will learn how to build a Dashboard in a Day!

Power BI Fabric Summit Carousel

The largest Power BI and Fabric virtual conference

130+ sessions, 130+ speakers, Product managers, MVPs, and experts. All about Power BI and Fabric. Attend online or watch the recordings.

Top Solution Authors