Skip to main content
cancel
Showing results for 
Search instead for 
Did you mean: 

Join us for an expert-led overview of the tools and concepts you'll need to become a Certified Power BI Data Analyst and pass exam PL-300. Register now.

Reply
sivas07
Frequent Visitor

Data in a column to be split into diff column's as per below sample data

 I am new in Power BI , have tried Pivoting & Unpivoting but was not able to acheive the required format as this is a large data which needs to be updated on a daily basis in the table ..

Need help to get the Data transformed so that the report can be done ..

Sample data.jpg

 

 

 

1 ACCEPTED SOLUTION
dufoq3
Super User
Super User

Hi @sivas07,

 

Result

dufoq3_0-1715607679756.png

 

v1 (Table.Group)

let
    Source = Table.FromRows(Json.Document(Binary.Decompress(Binary.FromText("i45WMlTSUTI00jUw1TUyMDIBcjzzUjITgXRAUX6KoVKsTrSSEbqS0GBHqAIjsAJjDAXeQMI5PyUVYoAJTjsSi0qMwUpM0ZW4pxblJuZVgsxJLC6B2GOGrsitKDEvORXh2FgA", BinaryEncoding.Base64), Compression.Deflate)), let _t = ((type nullable text) meta [Serialized.Text = true]) in type table [#"S. no." = _t, Date = _t, Country = _t, Items = _t]),
    GroupedRows = Table.Group(Source, {"Items"}, {{"All", each Table.RenameColumns(_, {"Items", [Items]{0}?}), type table}}),
    CombinedAll = Table.Combine(GroupedRows[All]),
    SortedRows = Table.Sort(CombinedAll,{{"S. no.", Order.Ascending}})
in
    SortedRows

 

v2 (List.Accumulate)

let
    Source = Table.FromRows(Json.Document(Binary.Decompress(Binary.FromText("i45WMlTSUTI00jUw1TUyMDIBcjzzUjITgXRAUX6KoVKsTrSSEbqS0GBHqAIjsAJjDAXeQMI5PyUVYoAJTjsSi0qMwUpM0ZW4pxblJuZVgsxJLC6B2GOGrsitKDEvORXh2FgA", BinaryEncoding.Base64), Compression.Deflate)), let _t = ((type nullable text) meta [Serialized.Text = true]) in type table [#"S. no." = _t, Date = _t, Country = _t, Items = _t]),
    ItemsList = List.Distinct(Source[Items]),
    Ad_ItemColumns = List.Accumulate(
        ItemsList,
        Source,
        (s,c)=> Table.AddColumn(s, c, each if [Items] = c then c else null, type text)
    )
in
    Ad_ItemColumns

Note: Check this link to learn how to use my query.
Check this link if you don't know how to provide sample data.

View solution in original post

1 REPLY 1
dufoq3
Super User
Super User

Hi @sivas07,

 

Result

dufoq3_0-1715607679756.png

 

v1 (Table.Group)

let
    Source = Table.FromRows(Json.Document(Binary.Decompress(Binary.FromText("i45WMlTSUTI00jUw1TUyMDIBcjzzUjITgXRAUX6KoVKsTrSSEbqS0GBHqAIjsAJjDAXeQMI5PyUVYoAJTjsSi0qMwUpM0ZW4pxblJuZVgsxJLC6B2GOGrsitKDEvORXh2FgA", BinaryEncoding.Base64), Compression.Deflate)), let _t = ((type nullable text) meta [Serialized.Text = true]) in type table [#"S. no." = _t, Date = _t, Country = _t, Items = _t]),
    GroupedRows = Table.Group(Source, {"Items"}, {{"All", each Table.RenameColumns(_, {"Items", [Items]{0}?}), type table}}),
    CombinedAll = Table.Combine(GroupedRows[All]),
    SortedRows = Table.Sort(CombinedAll,{{"S. no.", Order.Ascending}})
in
    SortedRows

 

v2 (List.Accumulate)

let
    Source = Table.FromRows(Json.Document(Binary.Decompress(Binary.FromText("i45WMlTSUTI00jUw1TUyMDIBcjzzUjITgXRAUX6KoVKsTrSSEbqS0GBHqAIjsAJjDAXeQMI5PyUVYoAJTjsSi0qMwUpM0ZW4pxblJuZVgsxJLC6B2GOGrsitKDEvORXh2FgA", BinaryEncoding.Base64), Compression.Deflate)), let _t = ((type nullable text) meta [Serialized.Text = true]) in type table [#"S. no." = _t, Date = _t, Country = _t, Items = _t]),
    ItemsList = List.Distinct(Source[Items]),
    Ad_ItemColumns = List.Accumulate(
        ItemsList,
        Source,
        (s,c)=> Table.AddColumn(s, c, each if [Items] = c then c else null, type text)
    )
in
    Ad_ItemColumns

Note: Check this link to learn how to use my query.
Check this link if you don't know how to provide sample data.

Helpful resources

Announcements
Join our Fabric User Panel

Join our Fabric User Panel

This is your chance to engage directly with the engineering team behind Fabric and Power BI. Share your experiences and shape the future.

June 2025 Power BI Update Carousel

Power BI Monthly Update - June 2025

Check out the June 2025 Power BI update to learn about new features.

June 2025 community update carousel

Fabric Community Update - June 2025

Find out what's new and trending in the Fabric community.