Join us at FabCon Atlanta from March 16 - 20, 2026, for the ultimate Fabric, Power BI, AI and SQL community-led event. Save $200 with code FABCOMM.
Register now!The Power BI Data Visualization World Championships is back! Get ahead of the game and start preparing now! Learn more
Hi, how can i replaced 0 to null on all columns but only for Category C and D in power query/M code?
let
Source = Table.FromRows(Json.Document(Binary.Decompress(Binary.FromText("i45WMjVQ0lGyABFmIMIIRDgqxepEK4FYhiDCBESAsBNY3BjGBWFLEOEMV2+Eot5FKTYWAA==", BinaryEncoding.Base64), Compression.Deflate)), let _t = ((type nullable text) meta [Serialized.Text = true]) in type table [Column1 = _t, Column2 = _t, Column3 = _t, Column4 = _t, Category = _t]),
#"Changed Type" = Table.TransformColumnTypes(Source,{{"Column1", Int64.Type}, {"Column2", Int64.Type}, {"Column3", Int64.Type}, {"Column4", Int64.Type}, {"Category", type text}})
in
#"Changed Type"
From:
| Column1 | Column2 | Column3 | Column4 | Category |
| 50 | 80 | 60 | 20 | A |
| 0 | 10 | 40 | 0 | B |
| 30 | 0 | 0 | 90 | C |
| 0 | 20 | 40 | 0 | D |
To:
| Column1 | Column2 | Column3 | Column4 | Category |
| 50 | 80 | 60 | 20 | A |
| 0 | 10 | 40 | 0 | B |
| 30 | null | null | 90 | C |
| null | 20 | 40 | null | D |
Solved! Go to Solution.
Try this if you do not wish to use the filetered table route.
The [If Then] makes the Replace hugely powerfull but might be slower as it is compares at the record level. Be very interested to see which is faster across your very large data set.
let
Source = Table.FromRows(Json.Document(Binary.Decompress(Binary.FromText("i45WMjVQ0lGyABFmIMIIRDgqxepEK4FYhiDCBESAsBNY3BjGBWFLEOEMV2+Eot5FKTYWAA==", BinaryEncoding.Base64), Compression.Deflate)), let _t = ((type nullable text) meta [Serialized.Text = true]) in type table [Column1 = _t, Column2 = _t, Column3 = _t, Column4 = _t, Category = _t]),
Columns = Table.ColumnNames(Source),
#"Changed Type" = Table.TransformColumnTypes(Source,{{"Column1", Int64.Type}, {"Column2", Int64.Type}, {"Column3", Int64.Type}, {"Column4", Int64.Type}, {"Category", type text}}),
#"Replaced Value" = Table.ReplaceValue(#"Changed Type",0,each if [Category] = "C" or [Category] = "D" then "null" else 0 ,Replacer.ReplaceValue,{"Column1","Column2","Column3","Column4"})
in
#"Replaced Value"
Try this if you do not wish to use the filetered table route.
The [If Then] makes the Replace hugely powerfull but might be slower as it is compares at the record level. Be very interested to see which is faster across your very large data set.
let
Source = Table.FromRows(Json.Document(Binary.Decompress(Binary.FromText("i45WMjVQ0lGyABFmIMIIRDgqxepEK4FYhiDCBESAsBNY3BjGBWFLEOEMV2+Eot5FKTYWAA==", BinaryEncoding.Base64), Compression.Deflate)), let _t = ((type nullable text) meta [Serialized.Text = true]) in type table [Column1 = _t, Column2 = _t, Column3 = _t, Column4 = _t, Category = _t]),
Columns = Table.ColumnNames(Source),
#"Changed Type" = Table.TransformColumnTypes(Source,{{"Column1", Int64.Type}, {"Column2", Int64.Type}, {"Column3", Int64.Type}, {"Column4", Int64.Type}, {"Category", type text}}),
#"Replaced Value" = Table.ReplaceValue(#"Changed Type",0,each if [Category] = "C" or [Category] = "D" then "null" else 0 ,Replacer.ReplaceValue,{"Column1","Column2","Column3","Column4"})
in
#"Replaced Value"
Split the table into two separate tables, one with CD, one without CD. Replace all 0's across the with CD then rejoin the tables.
let
Source = Excel.CurrentWorkbook(){[Name="Table1"]}[Content],
FilterNonD = Table.SelectRows(Source, each not ([Category] = "D" or [Category] = "C")),
FilterD = Table.SelectRows(Source, each [Category] = "D" or [Category] = "C"),
ReplaceZeros = Table.ReplaceValue(FilterD,0,null,Replacer.ReplaceValue,{"Column1", "Column2", "Column3", "Column4"}),
CombineTables = Table.Combine({FilterNonD, ReplaceZeros})
in
CombineTables
I actually have huge data of million rows, is there a way without the need to split table?
@Anonymous , you might want to try,
let
Source = Table.FromRows(Json.Document(Binary.Decompress(Binary.FromText("VY65FcAwCEN3oXYRwFfKHFv4ef81EvnAScF/GEmGUihs5CgDERDgoOoKoWPAA6izzXU+UTtwmV9+/tvmPgPxhSYLqB8+yaNZH7HOFEcTWrvOCraiuZU/d/W5xnkTQ2RZiblSmiV1oT4=", BinaryEncoding.Base64), Compression.Deflate)), let _t = ((type nullable text) meta [Serialized.Text = true]) in type table [Column1 = _t, Column2 = _t, Column3 = _t, Column4 = _t, Category = _t]),
#"Changed Type" = Table.TransformColumnTypes(Source,{{"Column1", Int64.Type}, {"Column2", Int64.Type}, {"Column3", Int64.Type}, {"Column4", Int64.Type}, {"Category", type text}}),
Columns = Table.ColumnNames(Source),
#"Grouped Rows" = Table.Group(#"Changed Type", {"Category"}, {{"ar", each _, type table [Column1=nullable number, Column2=nullable number, Column3=nullable number, Column4=nullable number, Category=nullable text]}}),
#"Added Custom" = Table.AddColumn(
#"Grouped Rows",
"Custom",
each if List.Contains({"C","D"},[Category]) then
Table.ReplaceValue([ar],0,null,Replacer.ReplaceValue,Columns)
else [ar]
),
#"Removed Other Columns" = Table.SelectColumns(#"Added Custom",{"Custom"}),
#"Expanded Custom" = Table.ExpandTableColumn(#"Removed Other Columns", "Custom", Columns, Columns)
in
#"Expanded Custom"
| Thanks to the great efforts by MS engineers to simplify syntax of DAX! Most beginners are SUCCESSFULLY MISLED to think that they could easily master DAX; but it turns out that the intricacy of the most frequently used RANKX() is still way beyond their comprehension! |
DAX is simple, but NOT EASY! |
The Power BI Data Visualization World Championships is back! Get ahead of the game and start preparing now!
Check out the November 2025 Power BI update to learn about new features.