Join us at FabCon Atlanta from March 16 - 20, 2026, for the ultimate Fabric, Power BI, AI and SQL community-led event. Save $200 with code FABCOMM.
Register now!The Power BI Data Visualization World Championships is back! Get ahead of the game and start preparing now! Learn more
Hi pros,
My input table looks like
| Date | SaleA | SaleB | SaleC | SaleD |
| 01-Apr | 5000 | |||
| 02-Apr | 2000 | 3000 | 4000 | |
| 03-Apr | 502.12 | 203.45 | ||
| 04-Apr | -1000 | |||
| 05-Apr | 115.06 | |||
| 06-Apr | 111.11 | 117.54 | ||
| 07-Apr | ||||
| 08-Apr | 25.82 |
I need to clean all deposits which are multiple of 1000, e.g. 5000, -1000, 2000, 3000 etc. in the table.
Power Query 1 column conditional replacement works for me:
= Table.ReplaceValue(#"Changed Type",each [SaleA],each if Number.Mod([SaleA],1000)=0 then 0 else [SaleA],Replacer.ReplaceValue,{"SaleA"})
but I cannot do one-by-one for too many columns, they are almost whole table except the Date column.
Please help me with this situation in Power Query, thank you.
Solved! Go to Solution.
let
Source = Table.FromRows(Json.Document(Binary.Decompress(Binary.FromText("jY9LDoAgDAXvwhpLW1rgLsYbGHfeXz6JEoXE1aTt5L10XQ0jixNHxhpFxIzj3PcXNnuL/Jy4+b5BCjrR10QG4qp6EJ2nSt4t9Kf/HWINkQKGgRp6h4ConyOo9HIcN39TU3lHIfHE3C4=", BinaryEncoding.Base64), Compression.Deflate)), let _t = ((type nullable text) meta [Serialized.Text = true]) in type table [Date = _t, SaleA = _t, SaleB = _t, SaleC = _t, SaleD = _t]),
#"Changed Type" = Table.TransformColumnTypes(Source,{{"Date", type date}, {"SaleA", type number}, {"SaleB", type number}, {"SaleC", type number}, {"SaleD", type number}}),
#"Replaced Value" = Table.ReplaceValue(#"Changed Type", null, null, (x,y,z) => if Number.Mod(x,1000)=0 then null else x, List.Skip(Table.ColumnNames(#"Changed Type")))
in
#"Replaced Value"
Expertise = List.Accumulate( {Days as from Today}, {Skills and Knowledge}, (Current, Everyday) => Current & Day.LearnAndPractise(Everyday) ) |
let
Source = Table.FromRows(Json.Document(Binary.Decompress(Binary.FromText("jY9LDoAgDAXvwhpLW1rgLsYbGHfeXz6JEoXE1aTt5L10XQ0jixNHxhpFxIzj3PcXNnuL/Jy4+b5BCjrR10QG4qp6EJ2nSt4t9Kf/HWINkQKGgRp6h4ConyOo9HIcN39TU3lHIfHE3C4=", BinaryEncoding.Base64), Compression.Deflate)), let _t = ((type nullable text) meta [Serialized.Text = true]) in type table [Date = _t, SaleA = _t, SaleB = _t, SaleC = _t, SaleD = _t]),
#"Changed Type" = Table.TransformColumnTypes(Source,{{"Date", type date}, {"SaleA", type number}, {"SaleB", type number}, {"SaleC", type number}, {"SaleD", type number}}),
#"Replaced Value" = Table.ReplaceValue(#"Changed Type", null, null, (x,y,z) => if Number.Mod(x,1000)=0 then null else x, List.Skip(Table.ColumnNames(#"Changed Type")))
in
#"Replaced Value"
Expertise = List.Accumulate( {Days as from Today}, {Skills and Knowledge}, (Current, Everyday) => Current & Day.LearnAndPractise(Everyday) ) |
I suggest a small change to retain the data type for the replaced columns:
(x,y,z)as nullable number => if Number.Mod(x,1000)=0 then 0 else x,
if Number.Mod([SaleA], 1000) = 0 then 0 else [SaleA]
To check if a value is divisible by 1000 and replace it with 0, you can use the modulo operation (Number.Mod) to determine if there's no remainder when dividing by 1000.
The Power BI Data Visualization World Championships is back! Get ahead of the game and start preparing now!