Share feedback directly with Fabric product managers, participate in targeted research studies and influence the Fabric roadmap.
Sign up nowGet Fabric certified for FREE! Don't miss your chance! Learn more
Hi pros,
My input table looks like
| Date | SaleA | SaleB | SaleC | SaleD |
| 01-Apr | 5000 | |||
| 02-Apr | 2000 | 3000 | 4000 | |
| 03-Apr | 502.12 | 203.45 | ||
| 04-Apr | -1000 | |||
| 05-Apr | 115.06 | |||
| 06-Apr | 111.11 | 117.54 | ||
| 07-Apr | ||||
| 08-Apr | 25.82 |
I need to clean all deposits which are multiple of 1000, e.g. 5000, -1000, 2000, 3000 etc. in the table.
Power Query 1 column conditional replacement works for me:
= Table.ReplaceValue(#"Changed Type",each [SaleA],each if Number.Mod([SaleA],1000)=0 then 0 else [SaleA],Replacer.ReplaceValue,{"SaleA"})
but I cannot do one-by-one for too many columns, they are almost whole table except the Date column.
Please help me with this situation in Power Query, thank you.
Solved! Go to Solution.
let
Source = Table.FromRows(Json.Document(Binary.Decompress(Binary.FromText("jY9LDoAgDAXvwhpLW1rgLsYbGHfeXz6JEoXE1aTt5L10XQ0jixNHxhpFxIzj3PcXNnuL/Jy4+b5BCjrR10QG4qp6EJ2nSt4t9Kf/HWINkQKGgRp6h4ConyOo9HIcN39TU3lHIfHE3C4=", BinaryEncoding.Base64), Compression.Deflate)), let _t = ((type nullable text) meta [Serialized.Text = true]) in type table [Date = _t, SaleA = _t, SaleB = _t, SaleC = _t, SaleD = _t]),
#"Changed Type" = Table.TransformColumnTypes(Source,{{"Date", type date}, {"SaleA", type number}, {"SaleB", type number}, {"SaleC", type number}, {"SaleD", type number}}),
#"Replaced Value" = Table.ReplaceValue(#"Changed Type", null, null, (x,y,z) => if Number.Mod(x,1000)=0 then null else x, List.Skip(Table.ColumnNames(#"Changed Type")))
in
#"Replaced Value"
Expertise = List.Accumulate( {Days as from Today}, {Skills and Knowledge}, (Current, Everyday) => Current & Day.LearnAndPractise(Everyday) ) |
let
Source = Table.FromRows(Json.Document(Binary.Decompress(Binary.FromText("jY9LDoAgDAXvwhpLW1rgLsYbGHfeXz6JEoXE1aTt5L10XQ0jixNHxhpFxIzj3PcXNnuL/Jy4+b5BCjrR10QG4qp6EJ2nSt4t9Kf/HWINkQKGgRp6h4ConyOo9HIcN39TU3lHIfHE3C4=", BinaryEncoding.Base64), Compression.Deflate)), let _t = ((type nullable text) meta [Serialized.Text = true]) in type table [Date = _t, SaleA = _t, SaleB = _t, SaleC = _t, SaleD = _t]),
#"Changed Type" = Table.TransformColumnTypes(Source,{{"Date", type date}, {"SaleA", type number}, {"SaleB", type number}, {"SaleC", type number}, {"SaleD", type number}}),
#"Replaced Value" = Table.ReplaceValue(#"Changed Type", null, null, (x,y,z) => if Number.Mod(x,1000)=0 then null else x, List.Skip(Table.ColumnNames(#"Changed Type")))
in
#"Replaced Value"
Expertise = List.Accumulate( {Days as from Today}, {Skills and Knowledge}, (Current, Everyday) => Current & Day.LearnAndPractise(Everyday) ) |
I suggest a small change to retain the data type for the replaced columns:
(x,y,z)as nullable number => if Number.Mod(x,1000)=0 then 0 else x,
if Number.Mod([SaleA], 1000) = 0 then 0 else [SaleA]
To check if a value is divisible by 1000 and replace it with 0, you can use the modulo operation (Number.Mod) to determine if there's no remainder when dividing by 1000.
If you love stickers, then you will definitely want to check out our Community Sticker Challenge!
Check out the January 2026 Power BI update to learn about new features.
| User | Count |
|---|---|
| 7 | |
| 5 | |
| 4 | |
| 4 | |
| 3 |
| User | Count |
|---|---|
| 13 | |
| 11 | |
| 11 | |
| 7 | |
| 6 |