Join us at FabCon Atlanta from March 16 - 20, 2026, for the ultimate Fabric, Power BI, AI and SQL community-led event. Save $200 with code FABCOMM.
Register now!The Power BI Data Visualization World Championships is back! Get ahead of the game and start preparing now! Learn more
Hello, i´tryin to find an .jason file which include all post codes from Germany to import this map in Power BI Desktop to create a heat map by postcode level.
I found some .json file, but I was unable to import any of them.
Did everyone try to do this in Power BI, or ist there a visual i can use for this?
kind regards and many thanks
Oliver
can you share the file? and give an example of a picture of what you want to achieve
Proud to be a Super User!
Hello, i can' t upload the .json file because it´s too big, > 200 MB.
I tried files from different links->
https://www.jsonbix.com/karten-vorlagen/europa/deutschland/plz-postleitzahlen/
https://www.suche-postleitzahl.org/plz-karte-erstellen
https://www.jsonbix.com/karten-vorlagen/europa/
But non of them worked for me.
I wanted to creat such map in Power BI.
Sales differenc by postcode level.
Is there any Power BI map visual i can use for Germany (5 digits post codes)?
then just provide a subset, its impossible to help without a sample of the data
Proud to be a Super User!
Hello, here are some datas.
The whole list has over 8000 Postcodes.
Is it this what you need?
many thanks!
| PLZ | Sales MΔ |
| 47447 | -59.421,110 |
| 91052 | -58.378,450 |
| 78573 | -57.850,472 |
| 58644 | -56.445,741 |
| 85072 | -53.275,000 |
| 01609 | -53.084,301 |
| 91601 | -52.089,981 |
| 75181 | -49.796,680 |
| 12057 | -49.166,531 |
| 44532 | -46.785,081 |
| 12489 | -45.182,551 |
| 10969 | -45.133,729 |
| 30419 | -44.965,761 |
| 35041 | -44.558,080 |
| 79790 | -43.296,390 |
| 63450 | -42.732,979 |
| 61440 | -41.780,389 |
| 58840 | -40.980,889 |
| 04575 | -40.797,779 |
| 51143 | -39.308,360 |
| 58706 | -35.405,000 |
| 26655 | -35.385,960 |
| 73054 | -34.932,670 |
| 08523 | -34.625,820 |
| 90441 | -32.850,631 |
| 33129 | -30.886,512 |
| 04509 | -30.258,970 |
| 58762 | -30.054,420 |
| 42499 | -29.633,221 |
| 40589 | -29.424,130 |
| 42859 | -29.326,520 |
| 09653 | -28.749,000 |
| 63110 | -28.240,780 |
| 65189 | -27.016,830 |
| 34286 | -26.411,231 |
| 94121 | -26.092,919 |
| 86405 | -25.806,869 |
| 48268 | -25.516,191 |
| 57299 | -25.479,561 |
| 57365 | -25.270,551 |
| 84048 | -25.142,100 |
| 20457 | -24.975,980 |
| 49685 | -24.623,020 |
| 27321 | -24.152,540 |
| 58119 | -23.955,823 |
| 86807 | -23.786,430 |
| 69120 | -23.141,420 |
| 89275 | -22.883,270 |
| 60314 | -22.863,650 |
| 70736 | -22.695,110 |
| 05600 | -22.563,850 |
| 98693 | -22.456,819 |
| 49661 | -22.390,180 |
| 59368 | -22.347,290 |
| 71701 | -21.788,461 |
| 84508 | -21.766,210 |
| 79618 | -21.465,900 |
| 13439 | -20.232,050 |
| 33054 | -19.616,940 |
| 01920 | -19.420,870 |
| 39122 | -19.306,511 |
| 97076 | -19.289,980 |
| 49504 | -18.988,021 |
| 52382 | -18.964,720 |
| 76761 | -18.899,880 |
| 91126 | -18.631,780 |
| 21509 | -18.339,111 |
| 58099 | -18.207,651 |
| 88690 | -17.860,901 |
| 48599 | -17.855,120 |
| 74382 | -17.848,941 |
| 01894 | -17.701,369 |
| 35260 | -17.337,059 |
| 26904 | -17.127,569 |
| 19306 | -16.969,350 |
| 63069 | -16.871,780 |
| 76744 | -16.822,400 |
| 74360 | -16.822,079 |
| 47138 | -16.777,110 |
| 01328 | -16.391,810 |
| 72762 | -16.370,871 |
| 44147 | -16.364,181 |
| 59969 | -15.903,080 |
| 45473 | -15.836,440 |
| 84030 | -15.676,810 |
| 67283 | -15.655,669 |
| 64287 | -15.581,080 |
| 77709 | -15.413,890 |
| 01189 | -15.262,200 |
| 76552 | -15.252,850 |
| 98617 | -15.037,970 |
| 71272 | -15.003,800 |
| 53177 | -14.510,710 |
| 73062 | -14.504,900 |
| 24768 | -14.227,170 |
| 83052 | -13.999,380 |
| 59721 | -13.859,720 |
| 02070 | -13.777,660 |
| 77972 | -13.745,630 |
| 48565 | -13.742,219 |
| 74889 | -13.603,120 |
| 66333 | -13.552,410 |
| 04603 | -13.542,380 |
| 94330 | -13.412,990 |
| 50226 | -13.279,340 |
| 01187 | -13.116,160 |
| 27318 | -13.115,419 |
| 42897 | -12.785,130 |
| 27798 | -12.489,720 |
| 29699 | -12.394,780 |
| 46519 | -12.384,540 |
| 34508 | -12.347,359 |
| 66748 | -12.250,220 |
| 79104 | -12.230,330 |
| 13125 | -12.180,400 |
| 74321 | -12.101,570 |
| 40599 | -12.092,880 |
| 95326 | -12.078,210 |
| 73107 | -11.941,480 |
| 58553 | -11.845,550 |
| 09618 | -11.753,680 |
| 52222 | -11.654,210 |
| 26607 | -11.576,690 |
| 66538 | -11.528,741 |
| 12347 | -11.461,420 |
| 21255 | -11.289,900 |
| 03226 | -11.220,100 |
| 23560 | -11.217,870 |
| 49716 | -11.185,860 |
| 26388 | -11.149,890 |
| 04178 | -11.066,750 |
| 31177 | -10.897,440 |
| 86650 | -10.894,400 |
| 80809 | -10.847,930 |
| 22851 | -10.784,140 |
| 61169 | -10.463,400 |
| 06461 | -10.447,740 |
| 36041 | -10.426,571 |
| 87509 | -10.378,729 |
| 45884 | -10.172,870 |
| 61267 | -10.123,030 |
| 94234 | -10.083,080 |
| 97285 | -10.074,750 |
| 78655 | -9.948,460 |
| 83278 | -9.890,000 |
| 01705 | -9.714,278 |
| 48619 | -9.691,620 |
| 48683 | -9.658,869 |
| 77761 | -9.650,010 |
I am not sure what you were struggling with exactly but based on the data you gave me i was able to do this, i used arcgis because it is quite flexible on the mapping but you need to edit the settings of arcgis itself.
i set the data category of the postcodes to postcodes in power bi and then in arcgis made it specific to germany.
https://learn.microsoft.com/en-us/power-bi/visuals/power-bi-visualizations-arcgis
not sure if this solves your issue. if you have any specific questions let me know.
Proud to be a Super User!
The Power BI Data Visualization World Championships is back! Get ahead of the game and start preparing now!
Check out the November 2025 Power BI update to learn about new features.
| User | Count |
|---|---|
| 66 | |
| 44 | |
| 40 | |
| 29 | |
| 19 |
| User | Count |
|---|---|
| 200 | |
| 126 | |
| 103 | |
| 70 | |
| 53 |