Join us at FabCon Atlanta from March 16 - 20, 2026, for the ultimate Fabric, Power BI, AI and SQL community-led event. Save $200 with code FABCOMM.
Register now!The Power BI Data Visualization World Championships is back! Get ahead of the game and start preparing now! Learn more
Hello, i´tryin to find an .jason file which include all post codes from Germany to import this map in Power BI Desktop to create a heat map by postcode level.
I found some .json file, but I was unable to import any of them.
Did everyone try to do this in Power BI, or ist there a visual i can use for this?
kind regards and many thanks
Oliver
can you share the file? and give an example of a picture of what you want to achieve
Proud to be a Super User!
Hello, i can' t upload the .json file because it´s too big, > 200 MB.
I tried files from different links->
https://www.jsonbix.com/karten-vorlagen/europa/deutschland/plz-postleitzahlen/
https://www.suche-postleitzahl.org/plz-karte-erstellen
https://www.jsonbix.com/karten-vorlagen/europa/
But non of them worked for me.
I wanted to creat such map in Power BI.
Sales differenc by postcode level.
Is there any Power BI map visual i can use for Germany (5 digits post codes)?
then just provide a subset, its impossible to help without a sample of the data
Proud to be a Super User!
Hello, here are some datas.
The whole list has over 8000 Postcodes.
Is it this what you need?
many thanks!
| PLZ | Sales MΔ |
| 47447 | -59.421,110 |
| 91052 | -58.378,450 |
| 78573 | -57.850,472 |
| 58644 | -56.445,741 |
| 85072 | -53.275,000 |
| 01609 | -53.084,301 |
| 91601 | -52.089,981 |
| 75181 | -49.796,680 |
| 12057 | -49.166,531 |
| 44532 | -46.785,081 |
| 12489 | -45.182,551 |
| 10969 | -45.133,729 |
| 30419 | -44.965,761 |
| 35041 | -44.558,080 |
| 79790 | -43.296,390 |
| 63450 | -42.732,979 |
| 61440 | -41.780,389 |
| 58840 | -40.980,889 |
| 04575 | -40.797,779 |
| 51143 | -39.308,360 |
| 58706 | -35.405,000 |
| 26655 | -35.385,960 |
| 73054 | -34.932,670 |
| 08523 | -34.625,820 |
| 90441 | -32.850,631 |
| 33129 | -30.886,512 |
| 04509 | -30.258,970 |
| 58762 | -30.054,420 |
| 42499 | -29.633,221 |
| 40589 | -29.424,130 |
| 42859 | -29.326,520 |
| 09653 | -28.749,000 |
| 63110 | -28.240,780 |
| 65189 | -27.016,830 |
| 34286 | -26.411,231 |
| 94121 | -26.092,919 |
| 86405 | -25.806,869 |
| 48268 | -25.516,191 |
| 57299 | -25.479,561 |
| 57365 | -25.270,551 |
| 84048 | -25.142,100 |
| 20457 | -24.975,980 |
| 49685 | -24.623,020 |
| 27321 | -24.152,540 |
| 58119 | -23.955,823 |
| 86807 | -23.786,430 |
| 69120 | -23.141,420 |
| 89275 | -22.883,270 |
| 60314 | -22.863,650 |
| 70736 | -22.695,110 |
| 05600 | -22.563,850 |
| 98693 | -22.456,819 |
| 49661 | -22.390,180 |
| 59368 | -22.347,290 |
| 71701 | -21.788,461 |
| 84508 | -21.766,210 |
| 79618 | -21.465,900 |
| 13439 | -20.232,050 |
| 33054 | -19.616,940 |
| 01920 | -19.420,870 |
| 39122 | -19.306,511 |
| 97076 | -19.289,980 |
| 49504 | -18.988,021 |
| 52382 | -18.964,720 |
| 76761 | -18.899,880 |
| 91126 | -18.631,780 |
| 21509 | -18.339,111 |
| 58099 | -18.207,651 |
| 88690 | -17.860,901 |
| 48599 | -17.855,120 |
| 74382 | -17.848,941 |
| 01894 | -17.701,369 |
| 35260 | -17.337,059 |
| 26904 | -17.127,569 |
| 19306 | -16.969,350 |
| 63069 | -16.871,780 |
| 76744 | -16.822,400 |
| 74360 | -16.822,079 |
| 47138 | -16.777,110 |
| 01328 | -16.391,810 |
| 72762 | -16.370,871 |
| 44147 | -16.364,181 |
| 59969 | -15.903,080 |
| 45473 | -15.836,440 |
| 84030 | -15.676,810 |
| 67283 | -15.655,669 |
| 64287 | -15.581,080 |
| 77709 | -15.413,890 |
| 01189 | -15.262,200 |
| 76552 | -15.252,850 |
| 98617 | -15.037,970 |
| 71272 | -15.003,800 |
| 53177 | -14.510,710 |
| 73062 | -14.504,900 |
| 24768 | -14.227,170 |
| 83052 | -13.999,380 |
| 59721 | -13.859,720 |
| 02070 | -13.777,660 |
| 77972 | -13.745,630 |
| 48565 | -13.742,219 |
| 74889 | -13.603,120 |
| 66333 | -13.552,410 |
| 04603 | -13.542,380 |
| 94330 | -13.412,990 |
| 50226 | -13.279,340 |
| 01187 | -13.116,160 |
| 27318 | -13.115,419 |
| 42897 | -12.785,130 |
| 27798 | -12.489,720 |
| 29699 | -12.394,780 |
| 46519 | -12.384,540 |
| 34508 | -12.347,359 |
| 66748 | -12.250,220 |
| 79104 | -12.230,330 |
| 13125 | -12.180,400 |
| 74321 | -12.101,570 |
| 40599 | -12.092,880 |
| 95326 | -12.078,210 |
| 73107 | -11.941,480 |
| 58553 | -11.845,550 |
| 09618 | -11.753,680 |
| 52222 | -11.654,210 |
| 26607 | -11.576,690 |
| 66538 | -11.528,741 |
| 12347 | -11.461,420 |
| 21255 | -11.289,900 |
| 03226 | -11.220,100 |
| 23560 | -11.217,870 |
| 49716 | -11.185,860 |
| 26388 | -11.149,890 |
| 04178 | -11.066,750 |
| 31177 | -10.897,440 |
| 86650 | -10.894,400 |
| 80809 | -10.847,930 |
| 22851 | -10.784,140 |
| 61169 | -10.463,400 |
| 06461 | -10.447,740 |
| 36041 | -10.426,571 |
| 87509 | -10.378,729 |
| 45884 | -10.172,870 |
| 61267 | -10.123,030 |
| 94234 | -10.083,080 |
| 97285 | -10.074,750 |
| 78655 | -9.948,460 |
| 83278 | -9.890,000 |
| 01705 | -9.714,278 |
| 48619 | -9.691,620 |
| 48683 | -9.658,869 |
| 77761 | -9.650,010 |
I am not sure what you were struggling with exactly but based on the data you gave me i was able to do this, i used arcgis because it is quite flexible on the mapping but you need to edit the settings of arcgis itself.
i set the data category of the postcodes to postcodes in power bi and then in arcgis made it specific to germany.
https://learn.microsoft.com/en-us/power-bi/visuals/power-bi-visualizations-arcgis
not sure if this solves your issue. if you have any specific questions let me know.
Proud to be a Super User!
The Power BI Data Visualization World Championships is back! Get ahead of the game and start preparing now!
| User | Count |
|---|---|
| 63 | |
| 45 | |
| 41 | |
| 36 | |
| 23 |
| User | Count |
|---|---|
| 189 | |
| 124 | |
| 106 | |
| 78 | |
| 52 |