Join us at FabCon Atlanta from March 16 - 20, 2026, for the ultimate Fabric, Power BI, AI and SQL community-led event. Save $200 with code FABCOMM.
Register now!The Power BI Data Visualization World Championships is back! Get ahead of the game and start preparing now! Learn more
Hello All
I am working on a Dashboard which is Connecting to Azure Data Bricks ( Data is Coming from Data Bricks) , I have Two DIfferent Tables, Lets say Table A and Table B . This Dashboard is Created around 1 Month back just FYI .
I have updated the Both Table in Azure Data Bricks adding few more VINs Details . Now when i am Refreshing the Same Table in Power BI Desktop , Table A Refreshed Successfully However While Refreshing Table B , I am Getting Following Error :
OLE DB or ODBC error: [DataSource.Error] ODBC: ERROR [HY000] [Microsoft][Hardy] (35) Error from server: error code: '0' error message: 'org.apache.hive.service.cli.HiveSQLException: Error running query: org.apache.spark.SparkException: Job aborted due to stage failure: Task 20 in stage 1.0 failed 4 times, most recent failure: Lost task 20.3 in stage 1.0 (TID 68) (): java.lang.IllegalStateException: Couldn't find DOC_OUTLET_TEMPERATURE#38 in [vin#30,model#31,gps_timestamp#32,country_code#33,position_lat#34,position_lon#35,ACTUAL_ENGINE_PERCENT_TORQUE#36,DEF_RATE#37,ENG_FUEL_RATE#40,ENG_HOURS#41,ENG_LOAD#42,ENG_SPEED#43,FUEL_LEVEL#44,FUEL_USED_FIELD#45,FUEL_USED_ROAD#46,GROUND_SPEED#47,REAR_PTO_SPEED#48,STATUS_DUTY_CODE#51,ENG_New2#52,vin_new2#53,ENG_FUELKG#54,new_eng_speed#55,new_fuel#56,InterPower#57] at org.apache.spark.sql.catalyst.expressions.BindReferences$$anonfun$bindReference$1.applyOrElse(BoundAttribute.scala:80) at org.apache.spark.sql.catalyst.expressions.BindReferences$$anonfun$bindReference$1.applyOrElse(BoundAttribute.scala:73) at org.apache.spark.sql.catalyst.trees.TreeNode.$anonfun$transformDownWithPruning$1(TreeNode.scala:590) at org.apache.spark.sql.catalyst.trees.CurrentOrigin$.withOrigin(TreeNode.scala:168) at org.apache.spark.sql.catalyst.trees.TreeNode.transformDownWithPruning(TreeNode.scala:590) at org.apache.spark.sql.catalyst.trees.TreeNode.$anonfun$transformDownWithPruning$3(TreeNode.scala:595) at org.apache.spark.sql.catalyst.trees.UnaryLike.mapChildren(TreeNode.scala:1241) at org.apache.spark.sql.catalyst.trees.UnaryLike.mapChildren$(TreeNode.scala:1240) at org.apache.spark.sql.catalyst.expressions.UnaryExpression.mapChildren(Expression.scala:607) at org.apache.spark.sql.catalyst.trees.TreeNode.transformDownWithPruning(TreeNode.scala:595) at org.apache.spark.sql.catalyst.trees.TreeNode.$anonfun$transformDownWithPruning$3(TreeNode.scala:595) at org.apache.spark.sql.catalyst.trees.UnaryLike.mapChildren(TreeNode.scala:1241) at org.apache.spark.sql.catalyst.trees.UnaryLike.mapChildren$(TreeNode.scala:1240) at org.apache.spark.sql.catalyst.expressions.UnaryExpression.mapChildren(Expression.scala:607) at org.apache.spark.sql.catalyst.trees.TreeNode.transformDownWithPruning(TreeNode.scala:595) at org.apache.spark.sql.catalyst.trees.TreeNode.transformDown(TreeNode.scala:566) at org.apache.spark.sql.catalyst.trees.TreeNode.transform(TreeNode.scala:534) at org.apache.spark.sql.catalyst.expressions.BindReferences$.bindReference(BoundAttribute.scala:73) at org.apache.spark.sql.catalyst.expressions.BindReferences$.$anonfun$bindReferences$1(BoundAttribute.scala:94) at scala.collection.immutable.List.map(List.scala:297) at org.apache.spark.sql.catalyst.expressions.BindReferences$.bindReferences(BoundAttribute.scala:94) at org.apache.spark.sql.catalyst.expressions.UnsafeProjection$.create(Projection.scala:160) at org.apache.spark.sql.execution.ProjectExec.$anonfun$doExecute$1(basicPhysicalOperators.scala:88) at org.apache.spark.sql.execution.ProjectExec.$anonfun$doExecute$1$adapted(basicPhysicalOperators.scala:87) at org.apache.spark.rdd.RDD.$anonfun$mapPartitionsWithIndexInternal$2(RDD.scala:890) at org.apache.spark.rdd.RDD.$anonfun$mapPartitionsWithIndexInternal$2$adapted(RDD.scala:890) at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:60) at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:380) at org.apache.spark.rdd.RDD.iterator(RDD.scala:344) at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:60) at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:380) at org.apache.spark.rdd.RDD.iterator(RDD.scala:344) at org.apache.spark.scheduler.ResultTask.$anonfun$runTask$3(ResultTask.scala:75) at com.databricks.spark.util.ExecutorFrameProfiler$.record(ExecutorFrameProfiler.scala:110) at org.apache.spark.scheduler.ResultTask.$anonfun$runTask$1(ResultTask.scala:75) at com.databricks.spark.util.ExecutorFrameProfiler$.record(ExecutorFrameProfiler.scala:110) at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:55) at org.apache.spark.scheduler.Task.doRunTask(Task.scala:161) at org.apache.spark.scheduler.Task.$anonfun$run$1(Task.scala:125) at com.databricks.spark.util.ExecutorFrameProfiler$.record(ExecutorFrameProfiler.scala:110) at org.apache.spark.scheduler.Task.run(Task.scala:95) at org.apache.spark.executor.Executor$TaskRunner.$anonfun$run$13(Executor.scala:832) at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1681) at org.apache.spark.executor.Executor$TaskRunner.$anonfun$run$4(Executor.scala:835) at scala.runtime.java8.JFunction0$mcV$sp.apply(JFunction0$mcV$sp.java:23) at com.databricks.spark.util.ExecutorFrameProfiler$.record(ExecutorFrameProfiler.scala:110) at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:690) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624) at java.lang.Thread.run(Thread.java:750) Driver stacktrace: at org.apache.spark.sql.hive.thriftserver.HiveThriftServerErrors$.runningQueryError(HiveThriftServerErrors.scala:47) at org.apache.spark.sql.hive.thriftserver.SparkExecuteStatementOperation.org$apache$spark$sql$hive$thriftserver$SparkExecuteStatementOperation$$execute(SparkExecuteStatementOperation.scala:435) at org.apache.spark.sql.hive.thriftserver.SparkExecuteStatementOperation$$anon$2$$anon$3.$anonfun$run$2(SparkExecuteStatementOperation.scala:257) at scala.runtime.java8.JFunction0$mcV$sp.apply(JFunction0$mcV$sp.java:23) at org.apache.spark.sql.hive.thriftserver.ThriftLocalProperties.withLocalProperties(ThriftLocalProperties.scala:123) at org.apache.spark.sql.hive.thriftserver.ThriftLocalProperties.withLocalProperties$(ThriftLocalProperties.scala:48) at org.apache.spark.sql.hive.thriftserver.SparkExecuteStatementOperation.withLocalProperties(SparkExecuteStatementOperation.scala:52) at org.apache.spark.sql.hive.thriftserver.SparkExecuteStatementOperation$$anon$2$$anon$3.run(SparkExecuteStatementOperation.scala:235) at org.apache.spark.sql.hive.thriftserver.SparkExecuteStatementOperation$$anon$2$$anon$3.run(SparkExecuteStatementOperation.scala:220) at java.security.AccessController.doPrivileged(Native Method) at javax.security.auth.Subject.doAs(Subject.java:422) at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1878) at org.apache.spark.sql.hive.thriftserver.SparkExecuteStatementOperation$$anon$2.run(SparkExecuteStatementOperation.scala:269) at java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:511) at java.util.concurrent.FutureTask.run(FutureTask.java:266) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624) at java.lang.Thread.run(Thread.java:750) Caused by: org.apache.spark.SparkException: Job aborted due to stage failure: Task 20 in stage 1.0 failed 4 times, most recent failure: Lost task 20.3 in stage 1.0 (TID 68) (10.251.46.103 executor 0): java.lang.IllegalStateException: Couldn't find DOC_OUTLET_TEMPERATURE#38 in [vin#30,model#31,gps_timestamp#32,country_code#33,position_lat#34,position_lon#35,ACTUAL_ENGINE_PERCENT_TORQUE#36,DEF_RATE#37,ENG_FUEL_RATE#40,ENG_HOURS#41,ENG_LOAD#42,ENG_SPEED#43,FUEL_LEVEL#44,FUEL_USED_FIELD#45,FUEL_USED_ROAD#46,GROUND_SPEED#47,REAR_PTO_SPEED#48,STATUS_DUTY_CODE#51,ENG_New2#52,vin_new2#53,ENG_FUELKG#54,new_eng_speed#55,new_fuel#56,InterPower#57] at org.apache.spark.sql.catalyst.expressions.BindReferences$$anonfun$bindReference$1.applyOrElse(BoundAttribute.scala:80) at org.apache.spark.sql.catalyst.expressions.BindReferences$$anonfun$bindReference$1.applyOrElse(BoundAttribute.scala:73) at org.apache.spark.sql.catalyst.trees.TreeNode.$anonfun$transformDownWithPruning$1(TreeNode.scala:590) at org.apache.spark.sql.catalyst.trees.CurrentOrigin$.withOrigin(TreeNode.scala:168) at org.apache.spark.sql.catalyst.trees.TreeNode.transformDownWithPruning(TreeNode.scala:590) at org.apache.spark.sql.catalyst.trees.TreeNode.$anonfun$tran.
Just One More Info Table B is Created Using Table A and one more tbale which is already there in Azure Data Bricks.
Can anyone Assist how to resolve this Error ?
Thanks in Advance
@lbendlin Hello
I have Checked the Same , DOC_OUTLET_TEMPERATURE this column is available in data base , I have chevck aftter dispaying the Table .
Adding to that Table A is Getting Refreshed without any error and as i said earler also that Table B is Created with Table A ,
What about the #38 ?
Looks like the column DOC_OUTLET_TEMPERATURE#38 is no longer present in DataBricks
The Power BI Data Visualization World Championships is back! Get ahead of the game and start preparing now!
| User | Count |
|---|---|
| 65 | |
| 43 | |
| 41 | |
| 32 | |
| 23 |
| User | Count |
|---|---|
| 200 | |
| 126 | |
| 103 | |
| 71 | |
| 54 |