Power BI is turning 10, and we’re marking the occasion with a special community challenge. Use your creativity to tell a story, uncover trends, or highlight something unexpected.
Get startedJoin us for an expert-led overview of the tools and concepts you'll need to become a Certified Power BI Data Analyst and pass exam PL-300. Register now.
Hello All
I am working on a Dashboard which is Connecting to Azure Data Bricks ( Data is Coming from Data Bricks) , I have Two DIfferent Tables, Lets say Table A and Table B . This Dashboard is Created around 1 Month back just FYI .
I have updated the Both Table in Azure Data Bricks adding few more VINs Details . Now when i am Refreshing the Same Table in Power BI Desktop , Table A Refreshed Successfully However While Refreshing Table B , I am Getting Following Error :
OLE DB or ODBC error: [DataSource.Error] ODBC: ERROR [HY000] [Microsoft][Hardy] (35) Error from server: error code: '0' error message: 'org.apache.hive.service.cli.HiveSQLException: Error running query: org.apache.spark.SparkException: Job aborted due to stage failure: Task 20 in stage 1.0 failed 4 times, most recent failure: Lost task 20.3 in stage 1.0 (TID 68) (): java.lang.IllegalStateException: Couldn't find DOC_OUTLET_TEMPERATURE#38 in [vin#30,model#31,gps_timestamp#32,country_code#33,position_lat#34,position_lon#35,ACTUAL_ENGINE_PERCENT_TORQUE#36,DEF_RATE#37,ENG_FUEL_RATE#40,ENG_HOURS#41,ENG_LOAD#42,ENG_SPEED#43,FUEL_LEVEL#44,FUEL_USED_FIELD#45,FUEL_USED_ROAD#46,GROUND_SPEED#47,REAR_PTO_SPEED#48,STATUS_DUTY_CODE#51,ENG_New2#52,vin_new2#53,ENG_FUELKG#54,new_eng_speed#55,new_fuel#56,InterPower#57] at org.apache.spark.sql.catalyst.expressions.BindReferences$$anonfun$bindReference$1.applyOrElse(BoundAttribute.scala:80) at org.apache.spark.sql.catalyst.expressions.BindReferences$$anonfun$bindReference$1.applyOrElse(BoundAttribute.scala:73) at org.apache.spark.sql.catalyst.trees.TreeNode.$anonfun$transformDownWithPruning$1(TreeNode.scala:590) at org.apache.spark.sql.catalyst.trees.CurrentOrigin$.withOrigin(TreeNode.scala:168) at org.apache.spark.sql.catalyst.trees.TreeNode.transformDownWithPruning(TreeNode.scala:590) at org.apache.spark.sql.catalyst.trees.TreeNode.$anonfun$transformDownWithPruning$3(TreeNode.scala:595) at org.apache.spark.sql.catalyst.trees.UnaryLike.mapChildren(TreeNode.scala:1241) at org.apache.spark.sql.catalyst.trees.UnaryLike.mapChildren$(TreeNode.scala:1240) at org.apache.spark.sql.catalyst.expressions.UnaryExpression.mapChildren(Expression.scala:607) at org.apache.spark.sql.catalyst.trees.TreeNode.transformDownWithPruning(TreeNode.scala:595) at org.apache.spark.sql.catalyst.trees.TreeNode.$anonfun$transformDownWithPruning$3(TreeNode.scala:595) at org.apache.spark.sql.catalyst.trees.UnaryLike.mapChildren(TreeNode.scala:1241) at org.apache.spark.sql.catalyst.trees.UnaryLike.mapChildren$(TreeNode.scala:1240) at org.apache.spark.sql.catalyst.expressions.UnaryExpression.mapChildren(Expression.scala:607) at org.apache.spark.sql.catalyst.trees.TreeNode.transformDownWithPruning(TreeNode.scala:595) at org.apache.spark.sql.catalyst.trees.TreeNode.transformDown(TreeNode.scala:566) at org.apache.spark.sql.catalyst.trees.TreeNode.transform(TreeNode.scala:534) at org.apache.spark.sql.catalyst.expressions.BindReferences$.bindReference(BoundAttribute.scala:73) at org.apache.spark.sql.catalyst.expressions.BindReferences$.$anonfun$bindReferences$1(BoundAttribute.scala:94) at scala.collection.immutable.List.map(List.scala:297) at org.apache.spark.sql.catalyst.expressions.BindReferences$.bindReferences(BoundAttribute.scala:94) at org.apache.spark.sql.catalyst.expressions.UnsafeProjection$.create(Projection.scala:160) at org.apache.spark.sql.execution.ProjectExec.$anonfun$doExecute$1(basicPhysicalOperators.scala:88) at org.apache.spark.sql.execution.ProjectExec.$anonfun$doExecute$1$adapted(basicPhysicalOperators.scala:87) at org.apache.spark.rdd.RDD.$anonfun$mapPartitionsWithIndexInternal$2(RDD.scala:890) at org.apache.spark.rdd.RDD.$anonfun$mapPartitionsWithIndexInternal$2$adapted(RDD.scala:890) at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:60) at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:380) at org.apache.spark.rdd.RDD.iterator(RDD.scala:344) at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:60) at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:380) at org.apache.spark.rdd.RDD.iterator(RDD.scala:344) at org.apache.spark.scheduler.ResultTask.$anonfun$runTask$3(ResultTask.scala:75) at com.databricks.spark.util.ExecutorFrameProfiler$.record(ExecutorFrameProfiler.scala:110) at org.apache.spark.scheduler.ResultTask.$anonfun$runTask$1(ResultTask.scala:75) at com.databricks.spark.util.ExecutorFrameProfiler$.record(ExecutorFrameProfiler.scala:110) at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:55) at org.apache.spark.scheduler.Task.doRunTask(Task.scala:161) at org.apache.spark.scheduler.Task.$anonfun$run$1(Task.scala:125) at com.databricks.spark.util.ExecutorFrameProfiler$.record(ExecutorFrameProfiler.scala:110) at org.apache.spark.scheduler.Task.run(Task.scala:95) at org.apache.spark.executor.Executor$TaskRunner.$anonfun$run$13(Executor.scala:832) at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1681) at org.apache.spark.executor.Executor$TaskRunner.$anonfun$run$4(Executor.scala:835) at scala.runtime.java8.JFunction0$mcV$sp.apply(JFunction0$mcV$sp.java:23) at com.databricks.spark.util.ExecutorFrameProfiler$.record(ExecutorFrameProfiler.scala:110) at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:690) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624) at java.lang.Thread.run(Thread.java:750) Driver stacktrace: at org.apache.spark.sql.hive.thriftserver.HiveThriftServerErrors$.runningQueryError(HiveThriftServerErrors.scala:47) at org.apache.spark.sql.hive.thriftserver.SparkExecuteStatementOperation.org$apache$spark$sql$hive$thriftserver$SparkExecuteStatementOperation$$execute(SparkExecuteStatementOperation.scala:435) at org.apache.spark.sql.hive.thriftserver.SparkExecuteStatementOperation$$anon$2$$anon$3.$anonfun$run$2(SparkExecuteStatementOperation.scala:257) at scala.runtime.java8.JFunction0$mcV$sp.apply(JFunction0$mcV$sp.java:23) at org.apache.spark.sql.hive.thriftserver.ThriftLocalProperties.withLocalProperties(ThriftLocalProperties.scala:123) at org.apache.spark.sql.hive.thriftserver.ThriftLocalProperties.withLocalProperties$(ThriftLocalProperties.scala:48) at org.apache.spark.sql.hive.thriftserver.SparkExecuteStatementOperation.withLocalProperties(SparkExecuteStatementOperation.scala:52) at org.apache.spark.sql.hive.thriftserver.SparkExecuteStatementOperation$$anon$2$$anon$3.run(SparkExecuteStatementOperation.scala:235) at org.apache.spark.sql.hive.thriftserver.SparkExecuteStatementOperation$$anon$2$$anon$3.run(SparkExecuteStatementOperation.scala:220) at java.security.AccessController.doPrivileged(Native Method) at javax.security.auth.Subject.doAs(Subject.java:422) at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1878) at org.apache.spark.sql.hive.thriftserver.SparkExecuteStatementOperation$$anon$2.run(SparkExecuteStatementOperation.scala:269) at java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:511) at java.util.concurrent.FutureTask.run(FutureTask.java:266) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624) at java.lang.Thread.run(Thread.java:750) Caused by: org.apache.spark.SparkException: Job aborted due to stage failure: Task 20 in stage 1.0 failed 4 times, most recent failure: Lost task 20.3 in stage 1.0 (TID 68) (10.251.46.103 executor 0): java.lang.IllegalStateException: Couldn't find DOC_OUTLET_TEMPERATURE#38 in [vin#30,model#31,gps_timestamp#32,country_code#33,position_lat#34,position_lon#35,ACTUAL_ENGINE_PERCENT_TORQUE#36,DEF_RATE#37,ENG_FUEL_RATE#40,ENG_HOURS#41,ENG_LOAD#42,ENG_SPEED#43,FUEL_LEVEL#44,FUEL_USED_FIELD#45,FUEL_USED_ROAD#46,GROUND_SPEED#47,REAR_PTO_SPEED#48,STATUS_DUTY_CODE#51,ENG_New2#52,vin_new2#53,ENG_FUELKG#54,new_eng_speed#55,new_fuel#56,InterPower#57] at org.apache.spark.sql.catalyst.expressions.BindReferences$$anonfun$bindReference$1.applyOrElse(BoundAttribute.scala:80) at org.apache.spark.sql.catalyst.expressions.BindReferences$$anonfun$bindReference$1.applyOrElse(BoundAttribute.scala:73) at org.apache.spark.sql.catalyst.trees.TreeNode.$anonfun$transformDownWithPruning$1(TreeNode.scala:590) at org.apache.spark.sql.catalyst.trees.CurrentOrigin$.withOrigin(TreeNode.scala:168) at org.apache.spark.sql.catalyst.trees.TreeNode.transformDownWithPruning(TreeNode.scala:590) at org.apache.spark.sql.catalyst.trees.TreeNode.$anonfun$tran.
Just One More Info Table B is Created Using Table A and one more tbale which is already there in Azure Data Bricks.
Can anyone Assist how to resolve this Error ?
Thanks in Advance
@lbendlin Hello
I have Checked the Same , DOC_OUTLET_TEMPERATURE this column is available in data base , I have chevck aftter dispaying the Table .
Adding to that Table A is Getting Refreshed without any error and as i said earler also that Table B is Created with Table A ,
What about the #38 ?
Looks like the column DOC_OUTLET_TEMPERATURE#38 is no longer present in DataBricks
This is your chance to engage directly with the engineering team behind Fabric and Power BI. Share your experiences and shape the future.
Check out the June 2025 Power BI update to learn about new features.
User | Count |
---|---|
79 | |
76 | |
59 | |
36 | |
31 |
User | Count |
---|---|
92 | |
59 | |
59 | |
49 | |
41 |