Join us at FabCon Atlanta from March 16 - 20, 2026, for the ultimate Fabric, Power BI, AI and SQL community-led event. Save $200 with code FABCOMM.
Register now!The Power BI Data Visualization World Championships is back! It's time to submit your entry. Live now!
Hello All
I am working on a Dashboard which is Connecting to Azure Data Bricks ( Data is Coming from Data Bricks) , I have Two DIfferent Tables, Lets say Table A and Table B . This Dashboard is Created around 1 Month back just FYI .
I have updated the Both Table in Azure Data Bricks adding few more VINs Details . Now when i am Refreshing the Same Table in Power BI Desktop , Table A Refreshed Successfully However While Refreshing Table B , I am Getting Following Error :
OLE DB or ODBC error: [DataSource.Error] ODBC: ERROR [HY000] [Microsoft][Hardy] (35) Error from server: error code: '0' error message: 'org.apache.hive.service.cli.HiveSQLException: Error running query: org.apache.spark.SparkException: Job aborted due to stage failure: Task 20 in stage 1.0 failed 4 times, most recent failure: Lost task 20.3 in stage 1.0 (TID 68) (): java.lang.IllegalStateException: Couldn't find DOC_OUTLET_TEMPERATURE#38 in [vin#30,model#31,gps_timestamp#32,country_code#33,position_lat#34,position_lon#35,ACTUAL_ENGINE_PERCENT_TORQUE#36,DEF_RATE#37,ENG_FUEL_RATE#40,ENG_HOURS#41,ENG_LOAD#42,ENG_SPEED#43,FUEL_LEVEL#44,FUEL_USED_FIELD#45,FUEL_USED_ROAD#46,GROUND_SPEED#47,REAR_PTO_SPEED#48,STATUS_DUTY_CODE#51,ENG_New2#52,vin_new2#53,ENG_FUELKG#54,new_eng_speed#55,new_fuel#56,InterPower#57] at org.apache.spark.sql.catalyst.expressions.BindReferences$$anonfun$bindReference$1.applyOrElse(BoundAttribute.scala:80) at org.apache.spark.sql.catalyst.expressions.BindReferences$$anonfun$bindReference$1.applyOrElse(BoundAttribute.scala:73) at org.apache.spark.sql.catalyst.trees.TreeNode.$anonfun$transformDownWithPruning$1(TreeNode.scala:590) at org.apache.spark.sql.catalyst.trees.CurrentOrigin$.withOrigin(TreeNode.scala:168) at org.apache.spark.sql.catalyst.trees.TreeNode.transformDownWithPruning(TreeNode.scala:590) at org.apache.spark.sql.catalyst.trees.TreeNode.$anonfun$transformDownWithPruning$3(TreeNode.scala:595) at org.apache.spark.sql.catalyst.trees.UnaryLike.mapChildren(TreeNode.scala:1241) at org.apache.spark.sql.catalyst.trees.UnaryLike.mapChildren$(TreeNode.scala:1240) at org.apache.spark.sql.catalyst.expressions.UnaryExpression.mapChildren(Expression.scala:607) at org.apache.spark.sql.catalyst.trees.TreeNode.transformDownWithPruning(TreeNode.scala:595) at org.apache.spark.sql.catalyst.trees.TreeNode.$anonfun$transformDownWithPruning$3(TreeNode.scala:595) at org.apache.spark.sql.catalyst.trees.UnaryLike.mapChildren(TreeNode.scala:1241) at org.apache.spark.sql.catalyst.trees.UnaryLike.mapChildren$(TreeNode.scala:1240) at org.apache.spark.sql.catalyst.expressions.UnaryExpression.mapChildren(Expression.scala:607) at org.apache.spark.sql.catalyst.trees.TreeNode.transformDownWithPruning(TreeNode.scala:595) at org.apache.spark.sql.catalyst.trees.TreeNode.transformDown(TreeNode.scala:566) at org.apache.spark.sql.catalyst.trees.TreeNode.transform(TreeNode.scala:534) at org.apache.spark.sql.catalyst.expressions.BindReferences$.bindReference(BoundAttribute.scala:73) at org.apache.spark.sql.catalyst.expressions.BindReferences$.$anonfun$bindReferences$1(BoundAttribute.scala:94) at scala.collection.immutable.List.map(List.scala:297) at org.apache.spark.sql.catalyst.expressions.BindReferences$.bindReferences(BoundAttribute.scala:94) at org.apache.spark.sql.catalyst.expressions.UnsafeProjection$.create(Projection.scala:160) at org.apache.spark.sql.execution.ProjectExec.$anonfun$doExecute$1(basicPhysicalOperators.scala:88) at org.apache.spark.sql.execution.ProjectExec.$anonfun$doExecute$1$adapted(basicPhysicalOperators.scala:87) at org.apache.spark.rdd.RDD.$anonfun$mapPartitionsWithIndexInternal$2(RDD.scala:890) at org.apache.spark.rdd.RDD.$anonfun$mapPartitionsWithIndexInternal$2$adapted(RDD.scala:890) at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:60) at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:380) at org.apache.spark.rdd.RDD.iterator(RDD.scala:344) at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:60) at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:380) at org.apache.spark.rdd.RDD.iterator(RDD.scala:344) at org.apache.spark.scheduler.ResultTask.$anonfun$runTask$3(ResultTask.scala:75) at com.databricks.spark.util.ExecutorFrameProfiler$.record(ExecutorFrameProfiler.scala:110) at org.apache.spark.scheduler.ResultTask.$anonfun$runTask$1(ResultTask.scala:75) at com.databricks.spark.util.ExecutorFrameProfiler$.record(ExecutorFrameProfiler.scala:110) at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:55) at org.apache.spark.scheduler.Task.doRunTask(Task.scala:161) at org.apache.spark.scheduler.Task.$anonfun$run$1(Task.scala:125) at com.databricks.spark.util.ExecutorFrameProfiler$.record(ExecutorFrameProfiler.scala:110) at org.apache.spark.scheduler.Task.run(Task.scala:95) at org.apache.spark.executor.Executor$TaskRunner.$anonfun$run$13(Executor.scala:832) at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1681) at org.apache.spark.executor.Executor$TaskRunner.$anonfun$run$4(Executor.scala:835) at scala.runtime.java8.JFunction0$mcV$sp.apply(JFunction0$mcV$sp.java:23) at com.databricks.spark.util.ExecutorFrameProfiler$.record(ExecutorFrameProfiler.scala:110) at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:690) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624) at java.lang.Thread.run(Thread.java:750) Driver stacktrace: at org.apache.spark.sql.hive.thriftserver.HiveThriftServerErrors$.runningQueryError(HiveThriftServerErrors.scala:47) at org.apache.spark.sql.hive.thriftserver.SparkExecuteStatementOperation.org$apache$spark$sql$hive$thriftserver$SparkExecuteStatementOperation$$execute(SparkExecuteStatementOperation.scala:435) at org.apache.spark.sql.hive.thriftserver.SparkExecuteStatementOperation$$anon$2$$anon$3.$anonfun$run$2(SparkExecuteStatementOperation.scala:257) at scala.runtime.java8.JFunction0$mcV$sp.apply(JFunction0$mcV$sp.java:23) at org.apache.spark.sql.hive.thriftserver.ThriftLocalProperties.withLocalProperties(ThriftLocalProperties.scala:123) at org.apache.spark.sql.hive.thriftserver.ThriftLocalProperties.withLocalProperties$(ThriftLocalProperties.scala:48) at org.apache.spark.sql.hive.thriftserver.SparkExecuteStatementOperation.withLocalProperties(SparkExecuteStatementOperation.scala:52) at org.apache.spark.sql.hive.thriftserver.SparkExecuteStatementOperation$$anon$2$$anon$3.run(SparkExecuteStatementOperation.scala:235) at org.apache.spark.sql.hive.thriftserver.SparkExecuteStatementOperation$$anon$2$$anon$3.run(SparkExecuteStatementOperation.scala:220) at java.security.AccessController.doPrivileged(Native Method) at javax.security.auth.Subject.doAs(Subject.java:422) at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1878) at org.apache.spark.sql.hive.thriftserver.SparkExecuteStatementOperation$$anon$2.run(SparkExecuteStatementOperation.scala:269) at java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:511) at java.util.concurrent.FutureTask.run(FutureTask.java:266) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624) at java.lang.Thread.run(Thread.java:750) Caused by: org.apache.spark.SparkException: Job aborted due to stage failure: Task 20 in stage 1.0 failed 4 times, most recent failure: Lost task 20.3 in stage 1.0 (TID 68) (10.251.46.103 executor 0): java.lang.IllegalStateException: Couldn't find DOC_OUTLET_TEMPERATURE#38 in [vin#30,model#31,gps_timestamp#32,country_code#33,position_lat#34,position_lon#35,ACTUAL_ENGINE_PERCENT_TORQUE#36,DEF_RATE#37,ENG_FUEL_RATE#40,ENG_HOURS#41,ENG_LOAD#42,ENG_SPEED#43,FUEL_LEVEL#44,FUEL_USED_FIELD#45,FUEL_USED_ROAD#46,GROUND_SPEED#47,REAR_PTO_SPEED#48,STATUS_DUTY_CODE#51,ENG_New2#52,vin_new2#53,ENG_FUELKG#54,new_eng_speed#55,new_fuel#56,InterPower#57] at org.apache.spark.sql.catalyst.expressions.BindReferences$$anonfun$bindReference$1.applyOrElse(BoundAttribute.scala:80) at org.apache.spark.sql.catalyst.expressions.BindReferences$$anonfun$bindReference$1.applyOrElse(BoundAttribute.scala:73) at org.apache.spark.sql.catalyst.trees.TreeNode.$anonfun$transformDownWithPruning$1(TreeNode.scala:590) at org.apache.spark.sql.catalyst.trees.CurrentOrigin$.withOrigin(TreeNode.scala:168) at org.apache.spark.sql.catalyst.trees.TreeNode.transformDownWithPruning(TreeNode.scala:590) at org.apache.spark.sql.catalyst.trees.TreeNode.$anonfun$tran.
Just One More Info Table B is Created Using Table A and one more tbale which is already there in Azure Data Bricks.
Can anyone Assist how to resolve this Error ?
Thanks in Advance
@lbendlin Hello
I have Checked the Same , DOC_OUTLET_TEMPERATURE this column is available in data base , I have chevck aftter dispaying the Table .
Adding to that Table A is Getting Refreshed without any error and as i said earler also that Table B is Created with Table A ,
What about the #38 ?
Looks like the column DOC_OUTLET_TEMPERATURE#38 is no longer present in DataBricks
The Power BI Data Visualization World Championships is back! It's time to submit your entry.
Check out the January 2026 Power BI update to learn about new features.
| User | Count |
|---|---|
| 56 | |
| 42 | |
| 41 | |
| 21 | |
| 21 |
| User | Count |
|---|---|
| 150 | |
| 107 | |
| 64 | |
| 36 | |
| 36 |