Skip to main content
cancel
Showing results for 
Search instead for 
Did you mean: 

Enhance your career with this limited time 50% discount on Fabric and Power BI exams. Ends August 31st. Request your voucher.

Reply
Anonymous
Not applicable

Conditional column

Which takes more space in report.. conditional column creation from power query or creating conditional column using DAX?

1 ACCEPTED SOLUTION
powerbidev123
Solution Sage
Solution Sage

Hi @Anonymous 

This is a list of the most important differences between DAX calculated columns and Power Query computed columns considering specific scenarios.

  • Adding a column to the model
    • A new DAX calculated column does not require a full refresh of the table.
    • A new Power Query computed column requires a full refresh of the table.
  • Full refresh of the table
    • The engine processes DAX calculated columns after the data of all the partitions has been loaded and compressed in memory.
    • A Power Query computed column is processed like any other column coming from the data source.
  • Incremental refresh and partition refresh
    • The engine processes the DAX calculated columns for all the rows of the table, even when only a few rows are added to or refreshed in the table.
    • The engine only computes values for the Power Query computed columns of the rows that are processed in any partial refresh.
  • Comparing compression
    • A DAX calculated column does not participate in the evaluation of the best sort order for the compression. As a result, the compression of the column might be far from ideal, especially for columns with a low number of unique values.
    • A Power Query computed column is compressed like any other column of the table.
  • Processing time
    • The cost of processing a single DAX calculated column corresponds to a sequential evaluation of the DAX expression for each row included in a refresh operation. Multiple DAX calculated columns within the same table are processed sequentially, one after the other, with an order compatible with calculation dependencies.
    • The cost for processing a Power Query calculated column mostly depends on the data source when the expression is optimized using query folding. For example, if M expressions are translated into equivalent SQL expressions, performance and parallelism entirely depend on the SQL data source.
    • Improving the compression of one column might negatively impact the compression of other columns in the data model.
  • Query performance
    • A column with better compression is smaller in memory and usually provides better performance levels. This is important in filter, group, and aggregation operations involving the column.
    • The compression of a DAX calculated column might be lower than that of a Power Query computed column.
    • An improvement in the compression of one column might negatively affect the compression of other columns in the data model.

View solution in original post

1 REPLY 1
powerbidev123
Solution Sage
Solution Sage

Hi @Anonymous 

This is a list of the most important differences between DAX calculated columns and Power Query computed columns considering specific scenarios.

  • Adding a column to the model
    • A new DAX calculated column does not require a full refresh of the table.
    • A new Power Query computed column requires a full refresh of the table.
  • Full refresh of the table
    • The engine processes DAX calculated columns after the data of all the partitions has been loaded and compressed in memory.
    • A Power Query computed column is processed like any other column coming from the data source.
  • Incremental refresh and partition refresh
    • The engine processes the DAX calculated columns for all the rows of the table, even when only a few rows are added to or refreshed in the table.
    • The engine only computes values for the Power Query computed columns of the rows that are processed in any partial refresh.
  • Comparing compression
    • A DAX calculated column does not participate in the evaluation of the best sort order for the compression. As a result, the compression of the column might be far from ideal, especially for columns with a low number of unique values.
    • A Power Query computed column is compressed like any other column of the table.
  • Processing time
    • The cost of processing a single DAX calculated column corresponds to a sequential evaluation of the DAX expression for each row included in a refresh operation. Multiple DAX calculated columns within the same table are processed sequentially, one after the other, with an order compatible with calculation dependencies.
    • The cost for processing a Power Query calculated column mostly depends on the data source when the expression is optimized using query folding. For example, if M expressions are translated into equivalent SQL expressions, performance and parallelism entirely depend on the SQL data source.
    • Improving the compression of one column might negatively impact the compression of other columns in the data model.
  • Query performance
    • A column with better compression is smaller in memory and usually provides better performance levels. This is important in filter, group, and aggregation operations involving the column.
    • The compression of a DAX calculated column might be lower than that of a Power Query computed column.
    • An improvement in the compression of one column might negatively affect the compression of other columns in the data model.

Helpful resources

Announcements
July 2025 community update carousel

Fabric Community Update - July 2025

Find out what's new and trending in the Fabric community.

July PBI25 Carousel

Power BI Monthly Update - July 2025

Check out the July 2025 Power BI update to learn about new features.