The ultimate Fabric, Power BI, SQL, and AI community-led learning event. Save €200 with code FABCOMM.
Get registeredEnhance your career with this limited time 50% discount on Fabric and Power BI exams. Ends September 15. Request your voucher.
Region | Total Sites | Expected Assets | Pending Sites |
North | 3 | 75 | 1 |
South | 2 | 50 | 1 |
East | 1 | 25 | 1 |
West | 5 | 125 | 3 |
Sample Data:
Locations[id] | Locations[Region] | Locations[SiteCount] | Locations[Status] |
1 | North | 25 | |
2 | North | 25 | Complete |
3 | North | 25 | Complete |
4 | South | 25 | |
5 | South | 25 | Complete |
6 | East | 25 | |
7 | West | 25 | |
8 | West | 25 | |
9 | West | 25 | |
10 | West | 25 | |
11 | West | 25 | Complete |
Assets[Location_id] | Assets[InventoryDate] |
1 | 7/4/1976 |
1 | 7/4/1976 |
1 | 7/4/1976 |
1 | 7/4/1976 |
1 | 7/4/1976 |
2 | 1/1/2023 |
2 | 1/1/2023 |
2 | 1/1/2023 |
4 | 7/4/1976 |
4 | 7/4/1976 |
4 | 7/4/1976 |
5 | 7/4/1976 |
5 | 7/4/1976 |
5 | 7/4/1976 |
5 | 7/4/1976 |
5 | 7/4/1976 |
5 | 7/4/1976 |
6 | 7/4/1976 |
6 | 7/4/1976 |
6 | 7/4/1976 |
7 | 7/4/1976 |
7 | 7/4/1976 |
7 | 7/4/1976 |
7 | 7/4/1976 |
8 | 7/4/1976 |
8 | 7/4/1976 |
8 | 7/4/1976 |
8 | 7/4/1976 |
9 | 7/4/1976 |
9 | 7/4/1976 |
9 | 7/4/1976 |
9 | 7/4/1976 |
10 | 1/1/2023 |
10 | 1/1/2023 |
10 | 1/1/2023 |
10 | 1/1/2023 |
11 | 1/1/2023 |
11 | 1/1/2023 |
11 | 1/1/2023 |
11 | 1/1/2023 |
Solved! Go to Solution.
Hi @InventoryMan ,
Here are the steps you can follow:
1. Create calculated table.
Table =
var _column=
SELECTCOLUMNS(
FILTER(ALL(Assets),
'Assets'[InventoryDate]=DATE(1976,7,4)),"Column_ID",'Assets'[Location_id])
var _table1=
SUMMARIZE(
'Locations','Locations'[Region],
"Total Sites",COUNT('Locations'[id]),
"Expected Assets",SUM('Locations'[SiteCount]),
"Pending Sites",COUNTX(FILTER(ALL(Locations),'Locations'[id] in _column&&'Locations'[Status]<>"Complete"&&'Locations'[Region]=EARLIER('Locations'[Region])),[Region]))
return
_table1
2. Result:
Best Regards,
Liu Yang
If this post helps, then please consider Accept it as the solution to help the other members find it more quickly
Hi @InventoryMan ,
Here are the steps you can follow:
1. Create calculated table.
Table =
var _column=
SELECTCOLUMNS(
FILTER(ALL(Assets),
'Assets'[InventoryDate]=DATE(1976,7,4)),"Column_ID",'Assets'[Location_id])
var _table1=
SUMMARIZE(
'Locations','Locations'[Region],
"Total Sites",COUNT('Locations'[id]),
"Expected Assets",SUM('Locations'[SiteCount]),
"Pending Sites",COUNTX(FILTER(ALL(Locations),'Locations'[id] in _column&&'Locations'[Status]<>"Complete"&&'Locations'[Region]=EARLIER('Locations'[Region])),[Region]))
return
_table1
2. Result:
Best Regards,
Liu Yang
If this post helps, then please consider Accept it as the solution to help the other members find it more quickly
Thank you for your assistance on this! I have now been learning about the provided syntax.
Desired end result, and sample datat tables added.
@InventoryMan , Try like
SUMMARIZECOLUMNS(Locations[Region],
"Total Sites", COUNT('Locations'[Id]),
"Expected Assets", SUM('Locations'[SiteCount]),
"Pending Sites", COUNT('Locations'[Id]),
Filter(Assets, Assets[InventoryDate] = DATE(1976, 7, 4) )
Filter(Locations, Locations[Status] <> 'complete')
)
refer
https://www.sqlbi.com/articles/introducing-summarizecolumns/
@amitchandak Thank you, but I still receive an error for the filter. I will add some sample data, and perhaps there is another way to accomplish what I am looking for.
User | Count |
---|---|
65 | |
61 | |
60 | |
53 | |
30 |
User | Count |
---|---|
180 | |
88 | |
72 | |
48 | |
46 |