The ultimate Fabric, Power BI, SQL, and AI community-led learning event. Save €200 with code FABCOMM.
Get registeredCompete to become Power BI Data Viz World Champion! First round ends August 18th. Get started.
Dear Sirs & Experts,
I want a DAX measure that can calculate Ranking for Main Category then furthermore 3 sub-categories based on %.
Necessary Reference Files and expected results is attached below link (Excel and pbix):
https://drive.google.com/file/d/1XOUWo-EyXJVcT1_6LPCWgc38pn0dkUnP/view?usp=sharing
Old Dax not work:
Rank = SWITCH ( TRUE (), ISINSCOPE ( ASO[ASO Name] ), RANK ( SKIP, ALL ( ASO[ASO Name], ASO[Branch], ASO[Zone], ASO[Region] ), ORDERBY ( CALCULATE ( SUM ( ASO[Sales Ach] ) ), DESC ) ), ISINSCOPE ( ASO[Branch] ), RANK ( SKIP, ALL ( ASO[Branch], ASO[Zone], ASO[Region] ), ORDERBY ( CALCULATE ( SUM ( ASO[Sales Ach] ) ), DESC ) ), ISINSCOPE ( ASO[Zone] ), RANK ( SKIP, ALL ( ASO[Zone], ASO[Region] ), ORDERBY ( CALCULATE ( SUM ( ASO[Sales Ach] ) ), DESC ) ), ISINSCOPE ( ASO[Region] ), RANK ( SKIP, ALL ( ASO[Region] ), ORDERBY ( CALCULATE ( SUM ( ASO[Sales Ach] ) ), DESC ) ) )
Working Design On Power BI Dashboard and Expected Results showing in Excel Sheet:
@ Jihwan_Kim @Ashish_Mathur @amitchandak
Solved! Go to Solution.
According to your description, here are my steps you can follow as a solution.
(1) My test data is the same as yours.
(2) We can create a measure.
Rank = SWITCH ( TRUE (), ISINSCOPE ( 'unique keys'[ASO Name] ), RANK ( SKIP, ALL ( 'unique keys'[ASO Name], 'unique keys'[Branch], 'unique keys'[Zone], 'unique keys'[Region] ), ORDERBY ( CALCULATE ( SUM ('Sales data'[Sales Ach] ) ), DESC ) ), ISINSCOPE ( 'unique keys'[Branch] ), RANK ( SKIP, ALL ( 'unique keys'[Branch], 'unique keys'[Zone], 'unique keys'[Region] ), ORDERBY ( CALCULATE ( SUM ('Sales data'[Sales Ach] ) ), DESC ) ), ISINSCOPE ( 'unique keys'[Zone] ), RANK ( SKIP, ALL ( 'unique keys'[Zone], 'unique keys'[Region] ), ORDERBY ( CALCULATE ( SUM ( 'Sales data'[Sales Ach] ) ), DESC ) ), ISINSCOPE ( 'unique keys'[Region] ), RANK ( SKIP, ALL ( 'unique keys'[Region] ), ORDERBY ( CALCULATE ( SUM ( 'Sales data'[Sales Ach] ) ), DESC ) ) )
(3) Then the result is as follows.
Best Regards,
Neeko Tang
According to your description, here are my steps you can follow as a solution.
(1) My test data is the same as yours.
(2) We can create a measure.
Rank = SWITCH ( TRUE (), ISINSCOPE ( 'unique keys'[ASO Name] ), RANK ( SKIP, ALL ( 'unique keys'[ASO Name], 'unique keys'[Branch], 'unique keys'[Zone], 'unique keys'[Region] ), ORDERBY ( CALCULATE ( SUM ('Sales data'[Sales Ach] ) ), DESC ) ), ISINSCOPE ( 'unique keys'[Branch] ), RANK ( SKIP, ALL ( 'unique keys'[Branch], 'unique keys'[Zone], 'unique keys'[Region] ), ORDERBY ( CALCULATE ( SUM ('Sales data'[Sales Ach] ) ), DESC ) ), ISINSCOPE ( 'unique keys'[Zone] ), RANK ( SKIP, ALL ( 'unique keys'[Zone], 'unique keys'[Region] ), ORDERBY ( CALCULATE ( SUM ( 'Sales data'[Sales Ach] ) ), DESC ) ), ISINSCOPE ( 'unique keys'[Region] ), RANK ( SKIP, ALL ( 'unique keys'[Region] ), ORDERBY ( CALCULATE ( SUM ( 'Sales data'[Sales Ach] ) ), DESC ) ) )
(3) Then the result is as follows.
Best Regards,
Neeko Tang
User | Count |
---|---|
24 | |
10 | |
8 | |
7 | |
6 |
User | Count |
---|---|
31 | |
12 | |
10 | |
10 | |
9 |