Check your eligibility for this 50% exam voucher offer and join us for free live learning sessions to get prepared for Exam DP-700.
Get StartedDon't miss out! 2025 Microsoft Fabric Community Conference, March 31 - April 2, Las Vegas, Nevada. Use code MSCUST for a $150 discount. Prices go up February 11th. Register now.
how to implement Deneb chart with many column labels?
Trying to replicate Tableau stacked bar chart with 2 columns on the left side.
pls point me on example or give any idea
I found some here : “hconcat” block to display six columns side-by-side
Solved! Go to Solution.
Apologies for the delay. I have been sick for the last couple of weeks and am trying to catch up on things before the holidays. I've added columns to mimic the original mockup, so you should be able to adapt accordingly. Note that x-positioning is hard-coded, but this could be done via transforms - either way, I'm hoping this is enough for you to have a think about your version. A workbook containing the spec is also attached to this post.
Spec
{
"data": {
"name": "dataset"
},
"transform": [
{
"calculate": "datum['Sector'] + '-' + datum['Channel']",
"as": "grain"
},
{
"window": [
{
"op": "row_number",
"as": "group_row_number"
}
],
"groupby": [
"Sector"
]
}
],
"spacing": 0,
"hconcat": [
/* Labels */
{
"width": 150,
"layer": [
/* "Group" (sector) */
{
"transform": [
{
"filter": "datum['group_row_number'] == 1"
}
],
"mark": {
"type": "text",
"style": [
"category_label"
]
},
"encoding": {
"text": {
"field": "Sector"
},
"x": {
"value": 0
}
}
},
/* Channel column */
{
"mark": {
"type": "text",
"style": [
"category_label"
]
},
"encoding": {
"text": {
"field": "Channel"
},
"x": {
"value": 75
}
}
},
/* Sales Value */
{
"mark": {
"type": "text",
"style": [
"value_label"
]
},
"encoding": {
"text": {
"field": "Sales"
},
"x": {
"value": 175
}
}
},
/* Net Sales Value */
{
"mark": {
"type": "text",
"style": [
"value_label"
]
},
"encoding": {
"text": {
"field": "Net Sales"
},
"x": {
"value": 225
}
}
},
/* Profit Value */
{
"mark": {
"type": "text",
"style": [
"value_label"
]
},
"encoding": {
"text": {
"field": "Profit",
"format": ".1%"
},
"x": {
"value": 275
}
}
}
],
"encoding": {
"y": {
"field": "grain"
}
}
},
/* Negative-facing stack */
{
"width": 150,
"transform": [
{
"fold": [
"Sales",
"Net Sales"
],
"as": [
"metric",
"value"
]
}
],
"layer": [
{
"mark": {
"type": "bar"
}
}
],
"encoding": {
"y": {
"field": "grain"
},
"x": {
"field": "value",
"type": "quantitative",
"scale": {
"reverse": true
}
},
"color": {
"field": "metric",
"legend": null,
"scale": {
"range": ["#cee9fb", "#99cef7"]
}
}
}
},
/* Positive-facing stack */
{
"width": 150,
"layer": [
{
"mark": {
"type": "bar",
"color": "#d5a0c7"
}
}
],
"encoding": {
"x": {
"field": "Profit",
"type": "quantitative"
},
"y": {
"field": "grain"
}
}
}
]
}
Config
{
"view": {
"stroke": "transparent"
},
"axis": {
"title": false,
"ticks": false,
"grid": false,
"domain": false,
"labels": false
},
"style": {
"category_label": {
"align": "left"
},
"value_label": {
"align": "right"
}
}
}
Cheers,
Daniel
Proud to be a Super User!
My course: Introduction to Developing Power BI Visuals
On how to ask a technical question, if you really want an answer (courtesy of SQLBI)
Hey @Sergii_Petrov - based on the mockup and the data, I interpret your desired output as this. Is this correct? If not, please advise what needs fixing, and I will find more time to finish this up.
Proud to be a Super User!
My course: Introduction to Developing Power BI Visuals
On how to ask a technical question, if you really want an answer (courtesy of SQLBI)
what could I reach so far, and stuck on setting 2nd level grouping
{
"$schema": "https://vega.github.io/schema/vega-lite/v5.json",
"data": {
"values": [
{"Sector": "Sector 0", "Channel": "Fragmented", "Sales": 100, "Net Sales": 40, "Profit": "40.0%"},
{"Sector": "Sector 0", "Channel": "Organized", "Sales": 120, "Net Sales": 60, "Profit": "50.0%"},
{"Sector": "Sector 1", "Channel": "Fragmented", "Sales": 1222, "Net Sales": 1162, "Profit": "95.1%"},
{"Sector": "Sector 1", "Channel": "Organized", "Sales": 534, "Net Sales": 474, "Profit": "88.8%"},
{"Sector": "Sector 2", "Channel": "Fragmented", "Sales": 265, "Net Sales": 205, "Profit": "77.4%"},
{"Sector": "Sector 2", "Channel": "Organized", "Sales": 456, "Net Sales": 396, "Profit": "86.8%"},
{"Sector": "Sector 4", "Channel": "Fragmented", "Sales": 666, "Net Sales": 606, "Profit": "91.0%"},
{"Sector": "Sector 4", "Channel": "Organized", "Sales": 56, "Net Sales": 34, "Profit": "60.7%"},
{"Sector": "Sector 5", "Channel": "Fragmented", "Sales": 6665, "Net Sales": 6605, "Profit": "99.1%"},
{"Sector": "Sector 5", "Channel": "Organized", "Sales": 777, "Net Sales": 717, "Profit": "92.3%"},
{"Sector": "Sector 6", "Channel": "Fragmented", "Sales": 888, "Net Sales": 828, "Profit": "93.2%"},
{"Sector": "Sector 6", "Channel": "Organized", "Sales": 99, "Net Sales": 39, "Profit": "39.4%"}
]
},
"transform": [
{"joinaggregate": [{"op": "sum", "field": "Sales", "as": "TotalSales"}]},
{"calculate": "datum.Sales/datum.TotalSales * 100", "as": "PercentOfTotal"}
],
"hconcat": [
{
"mark": "text",
"encoding": {
"y": {"field": "Sector", "type": "ordinal"},
"text": {"field": "Sector", "type": "ordinal"}
}
},
{
"mark": "text",
"encoding": {
"y": {"field": "Sector", "type": "ordinal"},
"x": {"field": "Channel", "type": "ordinal"},
"text": {"field": "Sales", "type": "quantitative", "format": ",.0f"},
"tooltip": [
{"field": "Sales", "type": "quantitative", "title": "Sales"},
{"field": "Net Sales", "type": "quantitative", "title": "Net Sales"},
{"field": "Profit", "type": "nominal", "title": "Profit"}
]
}
},
{
"mark": "bar",
"encoding": {
"y": {"field": "Sector", "type": "ordinal"},
"x": {"field": "Sales", "type": "quantitative", "axis": {"labels": true,"title": null,"labelFontSize": 12, "titleFontSize": 14}},
"color": {"field": "Channel", "type": "nominal", "title": "Channel"}
}
}
],
"resolve": {"scale": {"y": "shared"}}
, "config": {
"text": {"baseline": "middle", "fontSize": 8},
"view": {"stroke": "transparent"},
"axis": {"domain": false, "ticks": false, "labels": false, "title": null},
"legend": {"orient": "right", "titleFontSize": 14, "labelFontSize": 12}
}
}
exactly!
if you have similar template it would be great.
only thing I'd like 2 more numeric columns in a matrix on the right to "fragmented" one
Apologies for the delay. I have been sick for the last couple of weeks and am trying to catch up on things before the holidays. I've added columns to mimic the original mockup, so you should be able to adapt accordingly. Note that x-positioning is hard-coded, but this could be done via transforms - either way, I'm hoping this is enough for you to have a think about your version. A workbook containing the spec is also attached to this post.
Spec
{
"data": {
"name": "dataset"
},
"transform": [
{
"calculate": "datum['Sector'] + '-' + datum['Channel']",
"as": "grain"
},
{
"window": [
{
"op": "row_number",
"as": "group_row_number"
}
],
"groupby": [
"Sector"
]
}
],
"spacing": 0,
"hconcat": [
/* Labels */
{
"width": 150,
"layer": [
/* "Group" (sector) */
{
"transform": [
{
"filter": "datum['group_row_number'] == 1"
}
],
"mark": {
"type": "text",
"style": [
"category_label"
]
},
"encoding": {
"text": {
"field": "Sector"
},
"x": {
"value": 0
}
}
},
/* Channel column */
{
"mark": {
"type": "text",
"style": [
"category_label"
]
},
"encoding": {
"text": {
"field": "Channel"
},
"x": {
"value": 75
}
}
},
/* Sales Value */
{
"mark": {
"type": "text",
"style": [
"value_label"
]
},
"encoding": {
"text": {
"field": "Sales"
},
"x": {
"value": 175
}
}
},
/* Net Sales Value */
{
"mark": {
"type": "text",
"style": [
"value_label"
]
},
"encoding": {
"text": {
"field": "Net Sales"
},
"x": {
"value": 225
}
}
},
/* Profit Value */
{
"mark": {
"type": "text",
"style": [
"value_label"
]
},
"encoding": {
"text": {
"field": "Profit",
"format": ".1%"
},
"x": {
"value": 275
}
}
}
],
"encoding": {
"y": {
"field": "grain"
}
}
},
/* Negative-facing stack */
{
"width": 150,
"transform": [
{
"fold": [
"Sales",
"Net Sales"
],
"as": [
"metric",
"value"
]
}
],
"layer": [
{
"mark": {
"type": "bar"
}
}
],
"encoding": {
"y": {
"field": "grain"
},
"x": {
"field": "value",
"type": "quantitative",
"scale": {
"reverse": true
}
},
"color": {
"field": "metric",
"legend": null,
"scale": {
"range": ["#cee9fb", "#99cef7"]
}
}
}
},
/* Positive-facing stack */
{
"width": 150,
"layer": [
{
"mark": {
"type": "bar",
"color": "#d5a0c7"
}
}
],
"encoding": {
"x": {
"field": "Profit",
"type": "quantitative"
},
"y": {
"field": "grain"
}
}
}
]
}
Config
{
"view": {
"stroke": "transparent"
},
"axis": {
"title": false,
"ticks": false,
"grid": false,
"domain": false,
"labels": false
},
"style": {
"category_label": {
"align": "left"
},
"value_label": {
"align": "right"
}
}
}
Cheers,
Daniel
Proud to be a Super User!
My course: Introduction to Developing Power BI Visuals
On how to ask a technical question, if you really want an answer (courtesy of SQLBI)
screenshot of what I'm trying to achieve and test data
Sector | Channel | Sales | Net Sales | Profit |
Sector 0 | Fragmented | 100 | 40 | 40.0% |
Organized | 120 | 60 | 50.0% | |
Sector 1 | Fragmented | 1,222 | 1,162 | 95.1% |
Organized | 534 | 474 | 88.8% | |
Sector 2 | Fragmented | 265 | 205 | 77.4% |
Organized | 456 | 396 | 86.8% | |
Sector 4 | Fragmented | 666 | 606 | 91.0% |
Organized | 56 | 34 | 60.7% | |
Sector 5 | Fragmented | 6,665 | 6,605 | 99.1% |
Organized | 777 | 717 | 92.3% | |
Sector 6 | Fragmented | 888 | 828 | 93.2% |
Organized | 99 | 39 | 39.4% |
Please provide sample data that covers your issue or question completely, in a usable format (not as a screenshot).
Do not include sensitive information. Do not include anything that is unrelated to the issue or question.
Need help uploading data? https://community.fabric.microsoft.com/t5/Community-Blog/How-to-provide-sample-data-in-the-Power-BI-...
Please show the expected outcome based on the sample data you provided.
Want faster answers? https://community.fabric.microsoft.com/t5/Desktop/How-to-Get-Your-Question-Answered-Quickly/m-p/1447...
March 31 - April 2, 2025, in Las Vegas, Nevada. Use code MSCUST for a $150 discount!
Check out the January 2025 Power BI update to learn about new features in Reporting, Modeling, and Data Connectivity.