Skip to main content
cancel
Showing results for 
Search instead for 
Did you mean: 

Don't miss out! 2025 Microsoft Fabric Community Conference, March 31 - April 2, Las Vegas, Nevada. Use code MSCUST for a $150 discount. Prices go up February 11th. Register now.

Reply
Sergii_Petrov
Frequent Visitor

how to implement Deneb chart with many column labels?

how to implement Deneb chart with many column labels?
Trying to replicate Tableau stacked bar chart with 2 columns on the left side.
pls point me on example or give any idea

I found some here“hconcat” block to display six columns side-by-side

1 ACCEPTED SOLUTION

Apologies for the delay. I have been sick for the last couple of weeks and am trying to catch up on things before the holidays. I've added columns to mimic the original mockup, so you should be able to adapt accordingly. Note that x-positioning is hard-coded, but this could be done via transforms - either way, I'm hoping this is enough for you to have a think about your version. A workbook containing the spec is also attached to this post.

 

dmp_1-1734559695652.png

 

Spec

{
  "data": {
    "name": "dataset"
  },
  "transform": [
    {
      "calculate": "datum['Sector'] + '-' + datum['Channel']",
      "as": "grain"
    },
    {
      "window": [
        {
          "op": "row_number",
          "as": "group_row_number"
        }
      ],
      "groupby": [
        "Sector"
      ]
    }
  ],
  "spacing": 0,
  "hconcat": [
    /* Labels */
    {
      "width": 150,
      "layer": [
        /* "Group" (sector) */
        {
          "transform": [
            {
              "filter": "datum['group_row_number'] == 1"
            }
          ],
          "mark": {
            "type": "text",
            "style": [
              "category_label"
            ]
          },
          "encoding": {
            "text": {
              "field": "Sector"
            },
            "x": {
              "value": 0
            }
          }
        },
        /* Channel column */
        {
          "mark": {
            "type": "text",
            "style": [
              "category_label"
            ]
          },
          "encoding": {
            "text": {
              "field": "Channel"
            },
            "x": {
              "value": 75
            }
          }
        },
        /* Sales Value */
        {
          "mark": {
            "type": "text",
            "style": [
              "value_label"
            ]
          },
          "encoding": {
            "text": {
              "field": "Sales"
            },
            "x": {
              "value": 175
            }
          }
        },
        /* Net Sales Value */
        {
          "mark": {
            "type": "text",
            "style": [
              "value_label"
            ]
          },
          "encoding": {
            "text": {
              "field": "Net Sales"
            },
            "x": {
              "value": 225
            }
          }
        },
        /* Profit Value */
        {
          "mark": {
            "type": "text",
            "style": [
              "value_label"
            ]
          },
          "encoding": {
            "text": {
              "field": "Profit",
              "format": ".1%"
            },
            "x": {
              "value": 275
            }
          }
        }
      ],
      "encoding": {
        "y": {
          "field": "grain"
        }
      }
    },
    /* Negative-facing stack */
    {
      "width": 150,
      "transform": [
        {
          "fold": [
            "Sales",
            "Net Sales"
          ],
          "as": [
            "metric",
            "value"
          ]
        }
      ],
      "layer": [
        {
          "mark": {
            "type": "bar"
          }
        }
      ],
      "encoding": {
        "y": {
          "field": "grain"
        },
        "x": {
          "field": "value",
          "type": "quantitative",
          "scale": {
            "reverse": true
          }
        },
        "color": {
          "field": "metric",
          "legend": null,
          "scale": {
            "range": ["#cee9fb", "#99cef7"]
          }
        }
      }
    },
    /* Positive-facing stack */
    {
      "width": 150,
      "layer": [
        {
          "mark": {
            "type": "bar",
            "color": "#d5a0c7"
          }
        }
      ],
      "encoding": {
        "x": {
          "field": "Profit",
          "type": "quantitative"
        },
        "y": {
          "field": "grain"
        }
      }
    }
  ]
}

Config

{
  "view": {
    "stroke": "transparent"
  },
  "axis": {
    "title": false,
    "ticks": false,
    "grid": false,
    "domain": false,
    "labels": false
  },
  "style": {
    "category_label": {
      "align": "left"
    },
    "value_label": {
      "align": "right"
    }
  }
}

Cheers,

 

Daniel





Did I answer your question? Mark my post as a solution!

Proud to be a Super User!


My course: Introduction to Developing Power BI Visuals


On how to ask a technical question, if you really want an answer (courtesy of SQLBI)




View solution in original post

6 REPLIES 6
dm-p
Super User
Super User

Hey @Sergii_Petrov - based on the mockup and the data, I interpret your desired output as this. Is this correct? If not, please advise what needs fixing, and I will find more time to finish this up.

 

dmp_0-1732835050580.png

 





Did I answer your question? Mark my post as a solution!

Proud to be a Super User!


My course: Introduction to Developing Power BI Visuals


On how to ask a technical question, if you really want an answer (courtesy of SQLBI)




what could I reach so far, and stuck on setting 2nd level grouping

{
  "$schema": "https://vega.github.io/schema/vega-lite/v5.json",
  "data": {
    "values": [
      {"Sector": "Sector 0", "Channel": "Fragmented", "Sales": 100, "Net Sales": 40, "Profit": "40.0%"},
      {"Sector": "Sector 0", "Channel": "Organized", "Sales": 120, "Net Sales": 60, "Profit": "50.0%"},
      {"Sector": "Sector 1", "Channel": "Fragmented", "Sales": 1222, "Net Sales": 1162, "Profit": "95.1%"},
      {"Sector": "Sector 1", "Channel": "Organized", "Sales": 534, "Net Sales": 474, "Profit": "88.8%"},
      {"Sector": "Sector 2", "Channel": "Fragmented", "Sales": 265, "Net Sales": 205, "Profit": "77.4%"},
      {"Sector": "Sector 2", "Channel": "Organized", "Sales": 456, "Net Sales": 396, "Profit": "86.8%"},
      {"Sector": "Sector 4", "Channel": "Fragmented", "Sales": 666, "Net Sales": 606, "Profit": "91.0%"},
      {"Sector": "Sector 4", "Channel": "Organized", "Sales": 56, "Net Sales": 34, "Profit": "60.7%"},
      {"Sector": "Sector 5", "Channel": "Fragmented", "Sales": 6665, "Net Sales": 6605, "Profit": "99.1%"},
      {"Sector": "Sector 5", "Channel": "Organized", "Sales": 777, "Net Sales": 717, "Profit": "92.3%"},
      {"Sector": "Sector 6", "Channel": "Fragmented", "Sales": 888, "Net Sales": 828, "Profit": "93.2%"},
      {"Sector": "Sector 6", "Channel": "Organized", "Sales": 99, "Net Sales": 39, "Profit": "39.4%"}
    ]
  },
  "transform": [
    {"joinaggregate": [{"op": "sum", "field": "Sales", "as": "TotalSales"}]},
    {"calculate": "datum.Sales/datum.TotalSales * 100", "as": "PercentOfTotal"}
  ],
  "hconcat": [
    {
      "mark": "text",
      "encoding": {
        "y": {"field": "Sector", "type": "ordinal"},
        "text": {"field": "Sector", "type": "ordinal"}
      }
    },
  {
      "mark": "text",
      "encoding": {
        "y": {"field": "Sector", "type": "ordinal"},
        "x": {"field": "Channel", "type": "ordinal"},
        "text": {"field": "Sales", "type": "quantitative", "format": ",.0f"},
        "tooltip": [
          {"field": "Sales", "type": "quantitative", "title": "Sales"},
          {"field": "Net Sales", "type": "quantitative", "title": "Net Sales"},
          {"field": "Profit", "type": "nominal", "title": "Profit"}
        ]
      }
    },
    {
      "mark": "bar",
      "encoding": {
        "y": {"field": "Sector", "type": "ordinal"},
        "x": {"field": "Sales", "type": "quantitative", "axis": {"labels": true,"title": null,"labelFontSize": 12, "titleFontSize": 14}},
        "color": {"field": "Channel", "type": "nominal", "title": "Channel"}
      }
    }
  ],
  "resolve": {"scale": {"y": "shared"}}
,  "config": {
    "text": {"baseline": "middle", "fontSize": 8},
    "view": {"stroke": "transparent"},
    "axis": {"domain": false, "ticks": false, "labels": false, "title": null},
    "legend": {"orient": "right", "titleFontSize": 14, "labelFontSize": 12}
  }
  }

 

exactly!
if you have similar template it would be great.

only thing I'd  like 2 more numeric columns in a matrix on the right to "fragmented" one

Apologies for the delay. I have been sick for the last couple of weeks and am trying to catch up on things before the holidays. I've added columns to mimic the original mockup, so you should be able to adapt accordingly. Note that x-positioning is hard-coded, but this could be done via transforms - either way, I'm hoping this is enough for you to have a think about your version. A workbook containing the spec is also attached to this post.

 

dmp_1-1734559695652.png

 

Spec

{
  "data": {
    "name": "dataset"
  },
  "transform": [
    {
      "calculate": "datum['Sector'] + '-' + datum['Channel']",
      "as": "grain"
    },
    {
      "window": [
        {
          "op": "row_number",
          "as": "group_row_number"
        }
      ],
      "groupby": [
        "Sector"
      ]
    }
  ],
  "spacing": 0,
  "hconcat": [
    /* Labels */
    {
      "width": 150,
      "layer": [
        /* "Group" (sector) */
        {
          "transform": [
            {
              "filter": "datum['group_row_number'] == 1"
            }
          ],
          "mark": {
            "type": "text",
            "style": [
              "category_label"
            ]
          },
          "encoding": {
            "text": {
              "field": "Sector"
            },
            "x": {
              "value": 0
            }
          }
        },
        /* Channel column */
        {
          "mark": {
            "type": "text",
            "style": [
              "category_label"
            ]
          },
          "encoding": {
            "text": {
              "field": "Channel"
            },
            "x": {
              "value": 75
            }
          }
        },
        /* Sales Value */
        {
          "mark": {
            "type": "text",
            "style": [
              "value_label"
            ]
          },
          "encoding": {
            "text": {
              "field": "Sales"
            },
            "x": {
              "value": 175
            }
          }
        },
        /* Net Sales Value */
        {
          "mark": {
            "type": "text",
            "style": [
              "value_label"
            ]
          },
          "encoding": {
            "text": {
              "field": "Net Sales"
            },
            "x": {
              "value": 225
            }
          }
        },
        /* Profit Value */
        {
          "mark": {
            "type": "text",
            "style": [
              "value_label"
            ]
          },
          "encoding": {
            "text": {
              "field": "Profit",
              "format": ".1%"
            },
            "x": {
              "value": 275
            }
          }
        }
      ],
      "encoding": {
        "y": {
          "field": "grain"
        }
      }
    },
    /* Negative-facing stack */
    {
      "width": 150,
      "transform": [
        {
          "fold": [
            "Sales",
            "Net Sales"
          ],
          "as": [
            "metric",
            "value"
          ]
        }
      ],
      "layer": [
        {
          "mark": {
            "type": "bar"
          }
        }
      ],
      "encoding": {
        "y": {
          "field": "grain"
        },
        "x": {
          "field": "value",
          "type": "quantitative",
          "scale": {
            "reverse": true
          }
        },
        "color": {
          "field": "metric",
          "legend": null,
          "scale": {
            "range": ["#cee9fb", "#99cef7"]
          }
        }
      }
    },
    /* Positive-facing stack */
    {
      "width": 150,
      "layer": [
        {
          "mark": {
            "type": "bar",
            "color": "#d5a0c7"
          }
        }
      ],
      "encoding": {
        "x": {
          "field": "Profit",
          "type": "quantitative"
        },
        "y": {
          "field": "grain"
        }
      }
    }
  ]
}

Config

{
  "view": {
    "stroke": "transparent"
  },
  "axis": {
    "title": false,
    "ticks": false,
    "grid": false,
    "domain": false,
    "labels": false
  },
  "style": {
    "category_label": {
      "align": "left"
    },
    "value_label": {
      "align": "right"
    }
  }
}

Cheers,

 

Daniel





Did I answer your question? Mark my post as a solution!

Proud to be a Super User!


My course: Introduction to Developing Power BI Visuals


On how to ask a technical question, if you really want an answer (courtesy of SQLBI)




Sergii_Petrov
Frequent Visitor

screenshot of what I'm trying to achieve and test data

 

SectorChannel SalesNet SalesProfit
Sector 0Fragmented 1004040.0%
 Organized 1206050.0%
Sector 1Fragmented 1,2221,16295.1%
 Organized 53447488.8%
Sector 2Fragmented 26520577.4%
 Organized 45639686.8%
Sector 4Fragmented 66660691.0%
 Organized 563460.7%
Sector 5Fragmented 6,6656,60599.1%
 Organized 77771792.3%
Sector 6Fragmented 88882893.2%
 Organized 993939.4%

Sergii_Petrov_0-1732272854519.png



lbendlin
Super User
Super User

Please provide sample data that covers your issue or question completely, in a usable format (not as a screenshot).

Do not include sensitive information. Do not include anything that is unrelated to the issue or question.

Need help uploading data? https://community.fabric.microsoft.com/t5/Community-Blog/How-to-provide-sample-data-in-the-Power-BI-...

Please show the expected outcome based on the sample data you provided.

Want faster answers? https://community.fabric.microsoft.com/t5/Desktop/How-to-Get-Your-Question-Answered-Quickly/m-p/1447...

Helpful resources

Announcements
Las Vegas 2025

Join us at the Microsoft Fabric Community Conference

March 31 - April 2, 2025, in Las Vegas, Nevada. Use code MSCUST for a $150 discount!

Jan25PBI_Carousel

Power BI Monthly Update - January 2025

Check out the January 2025 Power BI update to learn about new features in Reporting, Modeling, and Data Connectivity.

Jan NL Carousel

Fabric Community Update - January 2025

Find out what's new and trending in the Fabric community.

Top Solution Authors
Top Kudoed Authors