Advance your Data & AI career with 50 days of live learning, dataviz contests, hands-on challenges, study groups & certifications and more!
Get registeredGet Fabric Certified for FREE during Fabric Data Days. Don't miss your chance! Request now
Hi, I've been struggling with this and hope esomeone can help. I have a table of several thousand records. In this snip I've removed columns to simplify and anonymise. I want to remove rows to retain only those where there is a variance between consentglobalname for that contactnumber. In this snip, a suitable solution would leave me with only 4 rows, for contactnumber 'CON-383780'. I think the solution will use Group By but I can't figure it out. Any ideas? Thanks in advance
Solved! Go to Solution.
You can group by py3_contactnumber choosing to aggregate by count distinct rows and keeping all rows. Then amend the resulting code to take the distinct count of only the py3_consentglobalname column. (The code would like this...)
= Table.Group(#"Changed Type", {"py3_contactnumber"}, {{"_nested", each _, type table [py3_consentglobalname=nullable text, py3_contactnumber=nullable text]}, {"Count", each Table.RowCount(Table.Distinct(Table.SelectColumns(_, "py3_consentglobalname"))), Int64.Type}})
You can now filter the resulting contactnumber count column so that only contacts with a count greater than one are kept.
From there you have to decide which rows you are keeping. If you are keeping only rows with consent as "yes" you could use Table.TransformColumns() to filter the nested tables to keep "Yes" rows. Then expand the tables.
Complete code would look like this...
let
Source = Table.FromRows(Json.Document(Binary.Decompress(Binary.FromText("i45WikwtVtJRcvb30zWxMDY2sFSK1cEh6JdPpEKEoKmRiaGFAapuGoohu8bSzMwEtyDCLwYm5ugm4hOLBQA=", BinaryEncoding.Base64), Compression.Deflate)), let _t = ((type nullable text) meta [Serialized.Text = true]) in type table [py3_consentglobalname = _t, py3_contactnumber = _t]),
#"Changed Type" = Table.TransformColumnTypes(Source,{{"py3_consentglobalname", type text}, {"py3_contactnumber", type text}}),
#"Grouped Rows" = Table.Group(#"Changed Type", {"py3_contactnumber"}, {{"_nested", each _, type table [py3_consentglobalname=nullable text, py3_contactnumber=nullable text]}, {"Count", each Table.RowCount(Table.Distinct(Table.SelectColumns(_, "py3_consentglobalname"))), Int64.Type}}),
#"Filtered Rows" = Table.SelectRows(#"Grouped Rows", each ([Count] = 2)),
#"Removed Columns" = Table.RemoveColumns(#"Filtered Rows",{"Count"}),
Custom1 = Table.TransformColumns(#"Removed Columns", {{"_nested", each Table.SelectRows(_, each [py3_consentglobalname] = "Yes")}}),
#"Expanded _nested" = Table.ExpandTableColumn(Custom1, "_nested", {"py3_consentglobalname"}, {"py3_consentglobalname"})
in
#"Expanded _nested"
In this example I started with...
and ended with...
Hope this gets you pointed in the right direction.
Proud to be a Super User! | |
I suggest:
let
//Replace Source line with your actual data table
Source = Table,
#"Grouped Rows" = Table.Group(Source, {"py3_contactnumber"}, {
{"All", each _, type table [py3_consentglobalname=nullable text, py3_contactnumber=nullable text]},
{"Select", each List.ContainsAll([py3_consentglobalname],{"Yes","No"}), type logical}}),
#"Filtered Rows" = Table.SelectRows(#"Grouped Rows", each ([Select] = true)),
#"Removed Columns" = Table.RemoveColumns(#"Filtered Rows",{"py3_contactnumber", "Select"}),
#"Expanded All" = Table.ExpandTableColumn(#"Removed Columns", "All",
{"py3_consentglobalname", "py3_contactnumber"})
in
#"Expanded All"
Original Table
Result
You can group by py3_contactnumber choosing to aggregate by count distinct rows and keeping all rows. Then amend the resulting code to take the distinct count of only the py3_consentglobalname column. (The code would like this...)
= Table.Group(#"Changed Type", {"py3_contactnumber"}, {{"_nested", each _, type table [py3_consentglobalname=nullable text, py3_contactnumber=nullable text]}, {"Count", each Table.RowCount(Table.Distinct(Table.SelectColumns(_, "py3_consentglobalname"))), Int64.Type}})
You can now filter the resulting contactnumber count column so that only contacts with a count greater than one are kept.
From there you have to decide which rows you are keeping. If you are keeping only rows with consent as "yes" you could use Table.TransformColumns() to filter the nested tables to keep "Yes" rows. Then expand the tables.
Complete code would look like this...
let
Source = Table.FromRows(Json.Document(Binary.Decompress(Binary.FromText("i45WikwtVtJRcvb30zWxMDY2sFSK1cEh6JdPpEKEoKmRiaGFAapuGoohu8bSzMwEtyDCLwYm5ugm4hOLBQA=", BinaryEncoding.Base64), Compression.Deflate)), let _t = ((type nullable text) meta [Serialized.Text = true]) in type table [py3_consentglobalname = _t, py3_contactnumber = _t]),
#"Changed Type" = Table.TransformColumnTypes(Source,{{"py3_consentglobalname", type text}, {"py3_contactnumber", type text}}),
#"Grouped Rows" = Table.Group(#"Changed Type", {"py3_contactnumber"}, {{"_nested", each _, type table [py3_consentglobalname=nullable text, py3_contactnumber=nullable text]}, {"Count", each Table.RowCount(Table.Distinct(Table.SelectColumns(_, "py3_consentglobalname"))), Int64.Type}}),
#"Filtered Rows" = Table.SelectRows(#"Grouped Rows", each ([Count] = 2)),
#"Removed Columns" = Table.RemoveColumns(#"Filtered Rows",{"Count"}),
Custom1 = Table.TransformColumns(#"Removed Columns", {{"_nested", each Table.SelectRows(_, each [py3_consentglobalname] = "Yes")}}),
#"Expanded _nested" = Table.ExpandTableColumn(Custom1, "_nested", {"py3_consentglobalname"}, {"py3_consentglobalname"})
in
#"Expanded _nested"
In this example I started with...
and ended with...
Hope this gets you pointed in the right direction.
Proud to be a Super User! | |
Advance your Data & AI career with 50 days of live learning, contests, hands-on challenges, study groups & certifications and more!
Check out the October 2025 Power BI update to learn about new features.