Join us at FabCon Atlanta from March 16 - 20, 2026, for the ultimate Fabric, Power BI, AI and SQL community-led event. Save $200 with code FABCOMM.
Register now!Vote for your favorite vizzies from the Power BI Dataviz World Championship submissions. Vote now!
Hi All,
I have below dataset and required output as attached. I need to rolling quarterly figure for Value for each combination of ID,Category,Sub Category and Type. For example, for Month Dec-24, combination of ID,Category,Sub Category and Type, I need to go back Oct-24,Nov-24 & Dec-24 and aggregate the Value.
| ID | Category | Sub Category | Type | Month | Value |
| 1 | AA | A | T1 | Sep-24 | 100 |
| 1 | AA | A | T1 | Oct-24 | 50 |
| 1 | AA | B | T2 | Nov-24 | 100 |
| 1 | AA | B | T2 | Dec-24 | 90 |
| 1 | AA | A | T1 | Sep-24 | 100 |
| 1 | AA | A | T1 | Oct-24 | 50 |
| 2 | AA | B | T2 | Nov-24 | 100 |
| 2 | AA | B | T2 | Dec-24 | 90 |
| 1 | AA | A | T1 | Sep-24 | 100 |
| 1 | AB | B | T2 | Oct-24 | 50 |
| 2 | AA | A | T1 | Nov-24 | 100 |
| 2 | AA | A | T1 | Dec-24 | 90 |
Solved! Go to Solution.
Hi @rob_vander2 Could you try this please After Loading the data to Power Query
Sort the Data:
Sort the table by ID, Category, Sub Category, Type, and Month in ascending order.
Create a Custom Column for Rolling Total:
If this post helped please do give a kudos and accept this as a solution
Thanks In AdvanceI don't know, you have to test it 😉
You can also try this one (I've just added one 0 as 4th argument of inner Table.Group), but you can notice the speed difference. This will work if your data is sturcutred as your sample.
let
Source = Table.FromRows(Json.Document(Binary.Decompress(Binary.FromText("i45WMlTSUXJ0BBFAHALiBacW6BqZABmGBgZKsTrYlPgnl0CUmKKpcAKpMAISfvllOAyBK3FJTYYosYSoUAAyMTF2B5DhRiPCbsRUQn03OiEbj9ONcENwuxGuBMWNsQA=", BinaryEncoding.Base64), Compression.Deflate)), let _t = ((type nullable text) meta [Serialized.Text = true]) in type table [ID = _t, Category = _t, #"Sub Category" = _t, Type = _t, Month = _t, Value = _t]),
// You can delete this step when applying on real data.
ReplacedBlanks = Table.TransformColumns(Source, {}, each if Text.Trim(_) = "" then null else _),
ChangedType = Table.TransformColumnTypes(ReplacedBlanks,{{"Value", Int64.Type}}),
TransformedValue = Table.Combine(Table.Group(ChangedType, "ID", {{"T", each Table.Combine(Table.Group(_, {"ID", "Category", "Sub Category", "Type"}, {{"T2", (x)=> if x{0}[ID] = null then x else let a = Table.ToRecords(x) in Table.FromRecords(List.RemoveLastN(a, 1) & {List.Last(a) & [Value = List.Sum(x[Value])]}) , type table}}, 0)[T2]), type table}}, 0, (x,y)=> Byte.From(y is null))[T])
in
TransformedValue
Hi @rob_vander2, check this:
Output
let
Source = Table.FromRows(Json.Document(Binary.Decompress(Binary.FromText("i45WMlTSUXJ0BBFAHALiBacW6BqZABmGBgZKsTrYlPgnl0CUmKKpcAKpMAISfvllOAyBK3FJTYYosYSoUAAyMTF2B5DhRiPCbsRUQn03OiEbj9ONcENwuxGuBMWNsQA=", BinaryEncoding.Base64), Compression.Deflate)), let _t = ((type nullable text) meta [Serialized.Text = true]) in type table [ID = _t, Category = _t, #"Sub Category" = _t, Type = _t, Month = _t, Value = _t]),
// You can delete this step when applying on real data.
ReplacedBlanks = Table.TransformColumns(Source, {}, each if Text.Trim(_) = "" then null else _),
ChangedType = Table.TransformColumnTypes(ReplacedBlanks,{{"Value", Int64.Type}}),
TransformedValue = Table.Combine(Table.Group(ChangedType, "ID", {{"T", each Table.Combine(Table.Group(_, {"ID", "Category", "Sub Category", "Type"}, {{"T2", (x)=> if x{0}[ID] = null then x else let a = Table.ToRecords(x) in Table.FromRecords(List.RemoveLastN(a, 1) & {List.Last(a) & [Value = List.Sum(x[Value])]}) , type table}})[T2]), type table}}, 0, (x,y)=> Byte.From(y is null))[T])
in
TransformedValue
TransformedValue step explanation in steps:
I don't know, you have to test it 😉
You can also try this one (I've just added one 0 as 4th argument of inner Table.Group), but you can notice the speed difference. This will work if your data is sturcutred as your sample.
let
Source = Table.FromRows(Json.Document(Binary.Decompress(Binary.FromText("i45WMlTSUXJ0BBFAHALiBacW6BqZABmGBgZKsTrYlPgnl0CUmKKpcAKpMAISfvllOAyBK3FJTYYosYSoUAAyMTF2B5DhRiPCbsRUQn03OiEbj9ONcENwuxGuBMWNsQA=", BinaryEncoding.Base64), Compression.Deflate)), let _t = ((type nullable text) meta [Serialized.Text = true]) in type table [ID = _t, Category = _t, #"Sub Category" = _t, Type = _t, Month = _t, Value = _t]),
// You can delete this step when applying on real data.
ReplacedBlanks = Table.TransformColumns(Source, {}, each if Text.Trim(_) = "" then null else _),
ChangedType = Table.TransformColumnTypes(ReplacedBlanks,{{"Value", Int64.Type}}),
TransformedValue = Table.Combine(Table.Group(ChangedType, "ID", {{"T", each Table.Combine(Table.Group(_, {"ID", "Category", "Sub Category", "Type"}, {{"T2", (x)=> if x{0}[ID] = null then x else let a = Table.ToRecords(x) in Table.FromRecords(List.RemoveLastN(a, 1) & {List.Last(a) & [Value = List.Sum(x[Value])]}) , type table}}, 0)[T2]), type table}}, 0, (x,y)=> Byte.From(y is null))[T])
in
TransformedValue
Hi @rob_vander2 Could you try this please After Loading the data to Power Query
Sort the Data:
Sort the table by ID, Category, Sub Category, Type, and Month in ascending order.
Create a Custom Column for Rolling Total:
If this post helped please do give a kudos and accept this as a solution
Thanks In AdvanceVote for your favorite vizzies from the Power BI World Championship submissions!
If you love stickers, then you will definitely want to check out our Community Sticker Challenge!
Check out the January 2026 Power BI update to learn about new features.
| User | Count |
|---|---|
| 14 | |
| 12 | |
| 12 | |
| 7 | |
| 6 |