Power BI is turning 10, and we’re marking the occasion with a special community challenge. Use your creativity to tell a story, uncover trends, or highlight something unexpected.
Get startedJoin us for an expert-led overview of the tools and concepts you'll need to become a Certified Power BI Data Analyst and pass exam PL-300. Register now.
Hi I have a sql source returning data like
how do I pivot it so it shows
Org id | Expiry Date Operators Licence | Operators Licence | Expiry Date Insurance Certificate | Insurance Certificate
xxx | 08/07/2019 | 0 | 26/03/2020 | 0
And include the libiality Insurance with an expiry date.
I can do a normal pivot on the description but no idea with the expiry date
Thanks
Jason
Solved! Go to Solution.
Hi @jasemilly
Place the following M code in a blank query to see the steps.
let
Source = Table.FromRows(Json.Document(Binary.Decompress(Binary.FromText("lc7BCsIwEATQXwk5N2RMm8Z69SQU/IDSw7puISBV0njw700RRDwp7GkY3uwwaAAMJ2TEh8k0dWBD4GAA1/kzAa1rdKWxtQjWYdMp7LBeCY83SZSvaVF9ZJlZ1qIeq59V11rURXX4UA/zck9UNLWXlOMUmfLfcmHhv//tI53iJeaHem+83PEJ", BinaryEncoding.Base64), Compression.Deflate)), let _t = ((type nullable text) meta [Serialized.Text = true]) in type table [OrganisationId = _t, ExpiryDate = _t, Description = _t, ValidDocument = _t]),
#"Changed Type" = Table.TransformColumnTypes(Source,{{"OrganisationId", type text}, {"ExpiryDate", type datetime}, {"Description", type text}, {"ValidDocument", Int64.Type}}),
#"Added Custom" = Table.AddColumn(#"Changed Type", "Description copy", each "Expiry date " & [Description]),
#"Pivoted Column" = Table.Pivot(#"Added Custom", List.Distinct(#"Added Custom"[Description]), "Description", "ValidDocument", List.Sum),
#"Pivoted Column1" = Table.Pivot(#"Pivoted Column", List.Distinct(#"Pivoted Column"[#"Description copy"]), "Description copy", "ExpiryDate", List.Sum),
#"Grouped Rows" = Table.Group(#"Pivoted Column1", {"OrganisationId"}, {{"All rows", each Table.FirstN(Table.FillDown(Table.FillUp(_, Table.ColumnNames(_)),Table.ColumnNames(_)),1)}}),
#"Removed Columns" = Table.RemoveColumns(#"Grouped Rows",{"OrganisationId"}),
#"Expanded All rows" = Table.ExpandTableColumn(#"Removed Columns", "All rows", {"OrganisationId", "Operators Licence", "Insurance Certificate", "Liability Insurance", "Expiry date Liability Insurance", "Expiry date Operators Licence", "Expiry date Insurance Certificate"}, {"OrganisationId", "Operators Licence", "Insurance Certificate", "Liability Insurance", "Expiry date Liability Insurance", "Expiry date Operators Licence", "Expiry date Insurance Certificate"}),
#"Reordered Columns" = Table.ReorderColumns(#"Expanded All rows",{"OrganisationId", "Expiry date Operators Licence", "Operators Licence", "Expiry date Insurance Certificate", "Insurance Certificate", "Expiry date Liability Insurance", "Liability Insurance"})
in
#"Reordered Columns"
Please mark the question solved when done and consider giving a thumbs up if posts are helpful.
Contact me privately for support with any larger-scale BI needs, tutoring, etc.
Cheers
Hi @jasemilly
Place the following M code in a blank query to see the steps.
let
Source = Table.FromRows(Json.Document(Binary.Decompress(Binary.FromText("lc7BCsIwEATQXwk5N2RMm8Z69SQU/IDSw7puISBV0njw700RRDwp7GkY3uwwaAAMJ2TEh8k0dWBD4GAA1/kzAa1rdKWxtQjWYdMp7LBeCY83SZSvaVF9ZJlZ1qIeq59V11rURXX4UA/zck9UNLWXlOMUmfLfcmHhv//tI53iJeaHem+83PEJ", BinaryEncoding.Base64), Compression.Deflate)), let _t = ((type nullable text) meta [Serialized.Text = true]) in type table [OrganisationId = _t, ExpiryDate = _t, Description = _t, ValidDocument = _t]),
#"Changed Type" = Table.TransformColumnTypes(Source,{{"OrganisationId", type text}, {"ExpiryDate", type datetime}, {"Description", type text}, {"ValidDocument", Int64.Type}}),
#"Added Custom" = Table.AddColumn(#"Changed Type", "Description copy", each "Expiry date " & [Description]),
#"Pivoted Column" = Table.Pivot(#"Added Custom", List.Distinct(#"Added Custom"[Description]), "Description", "ValidDocument", List.Sum),
#"Pivoted Column1" = Table.Pivot(#"Pivoted Column", List.Distinct(#"Pivoted Column"[#"Description copy"]), "Description copy", "ExpiryDate", List.Sum),
#"Grouped Rows" = Table.Group(#"Pivoted Column1", {"OrganisationId"}, {{"All rows", each Table.FirstN(Table.FillDown(Table.FillUp(_, Table.ColumnNames(_)),Table.ColumnNames(_)),1)}}),
#"Removed Columns" = Table.RemoveColumns(#"Grouped Rows",{"OrganisationId"}),
#"Expanded All rows" = Table.ExpandTableColumn(#"Removed Columns", "All rows", {"OrganisationId", "Operators Licence", "Insurance Certificate", "Liability Insurance", "Expiry date Liability Insurance", "Expiry date Operators Licence", "Expiry date Insurance Certificate"}, {"OrganisationId", "Operators Licence", "Insurance Certificate", "Liability Insurance", "Expiry date Liability Insurance", "Expiry date Operators Licence", "Expiry date Insurance Certificate"}),
#"Reordered Columns" = Table.ReorderColumns(#"Expanded All rows",{"OrganisationId", "Expiry date Operators Licence", "Operators Licence", "Expiry date Insurance Certificate", "Insurance Certificate", "Expiry date Liability Insurance", "Liability Insurance"})
in
#"Reordered Columns"
Please mark the question solved when done and consider giving a thumbs up if posts are helpful.
Contact me privately for support with any larger-scale BI needs, tutoring, etc.
Cheers
Hi @jasemilly
Please paste the contents of the screen cap (initial table) in text-tabular format (like the second) so tha it can be copied
Please mark the question solved when done and consider giving a thumbs up if posts are helpful.
Contact me privately for support with any larger-scale BI needs, tutoring, etc.
Cheers
Hi AIB
is this ok?
OrganisationId ExpiryDate Description ValidDocument
000c02ea-e57f-437c-a0c7-00295da00624 | 08/07/2019 00:00:00 | Operators Licence | 0 |
000c02ea-e57f-437c-a0c7-00295da00624 | 26/03/2020 00:00:00 | Insurance Certificate | 0 |
000c02ea-e57f-437c-a0c7-00295da00624 | 03/05/2019 00:00:00 | Liability Insurance | 0 |
This is your chance to engage directly with the engineering team behind Fabric and Power BI. Share your experiences and shape the future.
Check out the June 2025 Power BI update to learn about new features.
User | Count |
---|---|
15 | |
12 | |
8 | |
8 | |
7 |
User | Count |
---|---|
15 | |
13 | |
8 | |
7 | |
6 |