Skip to main content
cancel
Showing results for 
Search instead for 
Did you mean: 

The Power BI Data Visualization World Championships is back! Get ahead of the game and start preparing now! Learn more

Reply
lbown
Frequent Visitor

JSON API RESULTS columns to rows

Hi

I am calling a JSON API with multiple dimensions and getting results in the following format:

 

{
  "metrics" : [ "FORECAST_ROOMS", "FORECAST_ADR", "FORECAST_REVENUE" ],
  "dimensions" : [ "MARKET_SEGMENT", "TARGET_DATE" ],
  "dimValues" : {
    "MARKET_SEGMENT" : [ "sg3278", "sg3278", "sg3278", "sg3278", "sg3278", "sg3278", "sg3278", "sg3278", "sg3278", "sg3280", "sg3280", "sg3280", "sg3280", "sg3280", "sg3280", "sg3280", "sg3280", "sg3280" ],
    "TARGET_DATE" : [ "2019-06-01", "2019-06-02", "2019-06-03", "2019-06-04", "2019-06-05", "2019-06-06", "2019-06-07", "2019-06-08", "2019-06-09", "2019-06-01", "2019-06-02", "2019-06-03", "2019-06-04", "2019-06-05", "2019-06-06", "2019-06-07", "2019-06-08", "2019-06-09" ]
  },
  "metricValues" : {
    "FORECAST_ROOMS" : [ 161, 153, 147, 156, 150, 155, 160, 161, 173, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
    "FORECAST_ADR" : [ 159.6239751552795, 128.72235294117647, 159.5944217687075, 184.66961538461538, 189.7738, 162.23774193548385, 136.878875, 159.63416149068323, 130.03739884393065, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ],
    "FORECAST_REVENUE" : [ 25699.46, 19694.52, 23460.38, 28808.46, 28466.07, 25146.85, 21900.62, 25701.1, 22496.47, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ]
  }


I need to get the data into a table similar to the below:

 

Target_Date, Market_Segment, Forecast_Rooms, Forecast_ADR, forecast Revenue,
01/06/2019,Sg_3278, 161, 159.62, 25699.46
01/06/2019,Sg_3280, 0, 0, 0
02/06/2019, Sg_3278, 153, 128.72, 19694.52
02/06/2019, Sg_3280, 0, 0, 0

 

How can I transform the results?

1 ACCEPTED SOLUTION
ImkeF
Community Champion
Community Champion

Shortest way is to use some record functions like so:

 

let
    YourJSON = "{#(cr)#(lf)  ""metrics"" : [ ""FORECAST_ROOMS"", ""FORECAST_ADR"", ""FORECAST_REVENUE"" ],#(cr)#(lf)  ""dimensions"" : [ ""MARKET_SEGMENT"", ""TARGET_DATE"" ],#(cr)#(lf)  ""dimValues"" : {#(cr)#(lf)    ""MARKET_SEGMENT"" : [ ""sg3278"", ""sg3278"", ""sg3278"", ""sg3278"", ""sg3278"", ""sg3278"", ""sg3278"", ""sg3278"", ""sg3278"", ""sg3280"", ""sg3280"", ""sg3280"", ""sg3280"", ""sg3280"", ""sg3280"", ""sg3280"", ""sg3280"", ""sg3280"" ],#(cr)#(lf)    ""TARGET_DATE"" : [ ""2019-06-01"", ""2019-06-02"", ""2019-06-03"", ""2019-06-04"", ""2019-06-05"", ""2019-06-06"", ""2019-06-07"", ""2019-06-08"", ""2019-06-09"", ""2019-06-01"", ""2019-06-02"", ""2019-06-03"", ""2019-06-04"", ""2019-06-05"", ""2019-06-06"", ""2019-06-07"", ""2019-06-08"", ""2019-06-09"" ]#(cr)#(lf)  },#(cr)#(lf)  ""metricValues"" : {#(cr)#(lf)    ""FORECAST_ROOMS"" : [ 161, 153, 147, 156, 150, 155, 160, 161, 173, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],#(cr)#(lf)    ""FORECAST_ADR"" : [ 159.6239751552795, 128.72235294117647, 159.5944217687075, 184.66961538461538, 189.7738, 162.23774193548385, 136.878875, 159.63416149068323, 130.03739884393065, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ],#(cr)#(lf)    ""FORECAST_REVENUE"" : [ 25699.46, 19694.52, 23460.38, 28808.46, 28466.07, 25146.85, 21900.62, 25701.1, 22496.47, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ]#(cr)#(lf)  }}#(cr)#(lf)",
    #"Parsed JSON" = Json.Document(YourJSON),
    CombineRecordsWithValues = Record.Combine({#"Parsed JSON"[dimValues], #"Parsed JSON"[metricValues]}),
    CreateTables = Table.FromColumns(Record.FieldValues(CombineRecordsWithValues), Record.FieldNames(CombineRecordsWithValues))
in
    CreateTables

 

 

Imke Feldmann (The BIccountant)

If you liked my solution, please give it a thumbs up. And if I did answer your question, please mark this post as a solution. Thanks!

How to integrate M-code into your solution -- How to get your questions answered quickly -- How to provide sample data -- Check out more PBI- learning resources here -- Performance Tipps for M-queries

View solution in original post

1 REPLY 1
ImkeF
Community Champion
Community Champion

Shortest way is to use some record functions like so:

 

let
    YourJSON = "{#(cr)#(lf)  ""metrics"" : [ ""FORECAST_ROOMS"", ""FORECAST_ADR"", ""FORECAST_REVENUE"" ],#(cr)#(lf)  ""dimensions"" : [ ""MARKET_SEGMENT"", ""TARGET_DATE"" ],#(cr)#(lf)  ""dimValues"" : {#(cr)#(lf)    ""MARKET_SEGMENT"" : [ ""sg3278"", ""sg3278"", ""sg3278"", ""sg3278"", ""sg3278"", ""sg3278"", ""sg3278"", ""sg3278"", ""sg3278"", ""sg3280"", ""sg3280"", ""sg3280"", ""sg3280"", ""sg3280"", ""sg3280"", ""sg3280"", ""sg3280"", ""sg3280"" ],#(cr)#(lf)    ""TARGET_DATE"" : [ ""2019-06-01"", ""2019-06-02"", ""2019-06-03"", ""2019-06-04"", ""2019-06-05"", ""2019-06-06"", ""2019-06-07"", ""2019-06-08"", ""2019-06-09"", ""2019-06-01"", ""2019-06-02"", ""2019-06-03"", ""2019-06-04"", ""2019-06-05"", ""2019-06-06"", ""2019-06-07"", ""2019-06-08"", ""2019-06-09"" ]#(cr)#(lf)  },#(cr)#(lf)  ""metricValues"" : {#(cr)#(lf)    ""FORECAST_ROOMS"" : [ 161, 153, 147, 156, 150, 155, 160, 161, 173, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],#(cr)#(lf)    ""FORECAST_ADR"" : [ 159.6239751552795, 128.72235294117647, 159.5944217687075, 184.66961538461538, 189.7738, 162.23774193548385, 136.878875, 159.63416149068323, 130.03739884393065, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ],#(cr)#(lf)    ""FORECAST_REVENUE"" : [ 25699.46, 19694.52, 23460.38, 28808.46, 28466.07, 25146.85, 21900.62, 25701.1, 22496.47, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ]#(cr)#(lf)  }}#(cr)#(lf)",
    #"Parsed JSON" = Json.Document(YourJSON),
    CombineRecordsWithValues = Record.Combine({#"Parsed JSON"[dimValues], #"Parsed JSON"[metricValues]}),
    CreateTables = Table.FromColumns(Record.FieldValues(CombineRecordsWithValues), Record.FieldNames(CombineRecordsWithValues))
in
    CreateTables

 

 

Imke Feldmann (The BIccountant)

If you liked my solution, please give it a thumbs up. And if I did answer your question, please mark this post as a solution. Thanks!

How to integrate M-code into your solution -- How to get your questions answered quickly -- How to provide sample data -- Check out more PBI- learning resources here -- Performance Tipps for M-queries

Helpful resources

Announcements
Power BI DataViz World Championships

Power BI Dataviz World Championships

The Power BI Data Visualization World Championships is back! Get ahead of the game and start preparing now!

December 2025 Power BI Update Carousel

Power BI Monthly Update - December 2025

Check out the December 2025 Power BI Holiday Recap!

FabCon Atlanta 2026 carousel

FabCon Atlanta 2026

Join us at FabCon Atlanta, March 16-20, for the ultimate Fabric, Power BI, AI and SQL community-led event. Save $200 with code FABCOMM.