Fabric is Generally Available. Browse Fabric Presentations. Work towards your Fabric certification with the Cloud Skills Challenge.
Hello,
I am trying to expand multiple binaries (PDF tables) in multiple nested folders so the table content from these PDF files are all usable as data points. I've put in a custom function with a sample file but the problem is that not all of these PDF's have the same format although majority of them do contain the same column names.
Here are the challenges:
I want to put in an M query that has a logic as such:
* If column X exists in the table I read from the PDF file, then rename as XX else pass
In Python this would look something like:
for table in tables:
for i in table.columns:
if i in c.keys():
mylist.append(c[i])
else:
mylist.append(i)
# VARS defined:
table = pd.DataFrame({"Customer Name": [1,2,3,4], "Content": ["s","a","3","4"], "Not exist": ["s","a","3","4"]})
a = ['Content',
'Filename',
'Extension',
'Date accessed',
'Date modified',
'Date created',
'Folder Path',
'Customer Name',
'Assumed Eff. Date']
b = ['Content Temp',
'Filename Temp',
'Extension Temp',
'Date accessed Temp',
'Date modified Temp',
'Date created Temp',
'Folder Path Temp',
'Customer Name Temp',
'Assumed Eff. Date Temp']
c = dict(zip(a,b))
# CODE
for i in df.columns:
if i in c.keys():
mylist.append(c[i])
else:
mylist.append(i)
Is this possible?
Thank you!!
Solved! Go to Solution.
Hi @nimblecat
Here is my solution for transforming column names. You can download the pbix at bottom to see details.
TempNameTable
let
Source = Table.FromRows(Json.Document(Binary.Decompress(Binary.FromText("i45Wcs7PK0nNK1GK1YlWcsvMSc1LzE0Fc1wrgOLFmfl5YJ5zaXFJfm5qkYIfWD4WAA==", BinaryEncoding.Base64), Compression.Deflate)), let _t = ((type nullable text) meta [Serialized.Text = true]) in type table [Name = _t]),
#"Changed Type" = Table.TransformColumnTypes(Source,{{"Name", type text}}),
#"Added Custom" = Table.AddColumn(#"Changed Type", "TempName", each [Name] & " Temp")
in
#"Added Custom"
Table
let
Source = Table.FromRows(Json.Document(Binary.Decompress(Binary.FromText("i45WMlTSUSoG4jSl2FgA", BinaryEncoding.Base64), Compression.Deflate)), let _t = ((type nullable text) meta [Serialized.Text = true]) in type table [#"Customer Name" = _t, Content = _t, #"Not exist" = _t]),
#"Changed Type" = Table.TransformColumnTypes(Source,{{"Customer Name", Int64.Type}, {"Content", type text}, {"Not exist", type text}}),
Name1 = TempNameTable[Name],
Name2 = TempNameTable[TempName],
ChangeColumnName = Table.TransformColumnNames(#"Changed Type", each if List.Contains(Name1, _) then let _index = List.PositionOf(Name1, _) in Name2{_index} else _)
in
ChangeColumnName
Best Regards,
Community Support Team _ Jing
If this post helps, please Accept it as Solution to help other members find it.
Hi @nimblecat
Here is my solution for transforming column names. You can download the pbix at bottom to see details.
TempNameTable
let
Source = Table.FromRows(Json.Document(Binary.Decompress(Binary.FromText("i45Wcs7PK0nNK1GK1YlWcsvMSc1LzE0Fc1wrgOLFmfl5YJ5zaXFJfm5qkYIfWD4WAA==", BinaryEncoding.Base64), Compression.Deflate)), let _t = ((type nullable text) meta [Serialized.Text = true]) in type table [Name = _t]),
#"Changed Type" = Table.TransformColumnTypes(Source,{{"Name", type text}}),
#"Added Custom" = Table.AddColumn(#"Changed Type", "TempName", each [Name] & " Temp")
in
#"Added Custom"
Table
let
Source = Table.FromRows(Json.Document(Binary.Decompress(Binary.FromText("i45WMlTSUSoG4jSl2FgA", BinaryEncoding.Base64), Compression.Deflate)), let _t = ((type nullable text) meta [Serialized.Text = true]) in type table [#"Customer Name" = _t, Content = _t, #"Not exist" = _t]),
#"Changed Type" = Table.TransformColumnTypes(Source,{{"Customer Name", Int64.Type}, {"Content", type text}, {"Not exist", type text}}),
Name1 = TempNameTable[Name],
Name2 = TempNameTable[TempName],
ChangeColumnName = Table.TransformColumnNames(#"Changed Type", each if List.Contains(Name1, _) then let _index = List.PositionOf(Name1, _) in Name2{_index} else _)
in
ChangeColumnName
Best Regards,
Community Support Team _ Jing
If this post helps, please Accept it as Solution to help other members find it.
Thank you! Very helpful!
Check out the November 2023 Power BI update to learn about new features.
Read the latest Fabric Community announcements, including updates on Power BI, Synapse, Data Factory and Data Activator.
Join us for a free, hands-on Microsoft workshop led by women trainers for women where you will learn how to build a Dashboard in a Day!