Join us at FabCon Atlanta from March 16 - 20, 2026, for the ultimate Fabric, Power BI, AI and SQL community-led event. Save $200 with code FABCOMM.
Register now!The Power BI Data Visualization World Championships is back! Get ahead of the game and start preparing now! Learn more
Hi there
i just need some help according to the below description
1- I receive a forecast version every week with the upcoming 12 weeks and in every version, we drop one older and add a new week forecast to the new version
2- sample is provided with the data and the needed Dax
3- want to compute WOW in each version of the forecast
4- then want to calculate the change rate for each week in all the versions of the forecast
5- need to have a trend line for the above point
| Request 1 | Week version | Week | Previous week forecast | |
| V-W43 | W43 | 56017 | ||
| W44 | 39376 | |||
| W45 | ||||
| W46 | ? | |||
| W47 | ? | |||
| W48 | ? | |||
| W49 | ? | |||
| W50 | ? | |||
| W51 | ? | |||
| W52 | ? | |||
| W1 | ? | |||
| W2 | ? |
| Request2 | ||||
| Week | V-W44 | V-W45 | V-W46 | |
| W44 | 39376 | 50194 | ||
| W45 | ||||
| W46 | ||||
| W47 | ||||
| W48 | ||||
| W49 | ||||
| W50 | ||||
| W51 | ||||
| W52 | ||||
| W1 | ||||
| W2 | ||||
| W3 |
|
| Request3 | Week | V-W44 | V-W45 |
| W44 | 27% | ||
| W45 | |||
| W46 | |||
| W47 | |||
| W48 | |||
| W49 | |||
| W50 | |||
| W51 | |||
| W52 | |||
| W1 | |||
| W2 | |||
| W3 |
data sample
Week versionWeekDayForecast
| V-W43 | W43 | 10/24/2022 | 5648 |
| V-W43 | W43 | 10/25/2022 | 9742 |
| V-W43 | W43 | 10/26/2022 | 9631 |
| V-W43 | W43 | 10/27/2022 | 9571 |
| V-W43 | W43 | 10/28/2022 | 5029 |
| V-W43 | W43 | 10/29/2022 | 6744 |
| V-W43 | W43 | 10/30/2022 | 9652 |
| V-W43 | W44 | 10/31/2022 | 5577 |
| V-W43 | W44 | 11/1/2022 | 5597 |
| V-W43 | W44 | 11/2/2022 | 4861 |
| V-W43 | W44 | 11/3/2022 | 3716 |
| V-W43 | W44 | 11/4/2022 | 7869 |
| V-W43 | W44 | 11/5/2022 | 7251 |
| V-W43 | W44 | 11/6/2022 | 4505 |
| V-W43 | W45 | 11/7/2022 | 8263 |
| V-W43 | W45 | 11/8/2022 | 3254 |
| V-W43 | W45 | 11/9/2022 | 4467 |
| V-W43 | W45 | 11/10/2022 | 4962 |
| V-W43 | W45 | 11/11/2022 | 8317 |
| V-W43 | W45 | 11/12/2022 | 3922 |
| V-W43 | W45 | 11/13/2022 | 8128 |
| V-W43 | W46 | 11/14/2022 | 7376 |
| V-W43 | W46 | 11/15/2022 | 6125 |
| V-W43 | W46 | 11/16/2022 | 4566 |
| V-W43 | W46 | 11/17/2022 | 4292 |
| V-W43 | W46 | 11/18/2022 | 4148 |
| V-W43 | W46 | 11/19/2022 | 3678 |
| V-W43 | W46 | 11/20/2022 | 5069 |
| V-W43 | W47 | 11/21/2022 | 8275 |
| V-W43 | W47 | 11/22/2022 | 9874 |
| V-W43 | W47 | 11/23/2022 | 4458 |
| V-W43 | W47 | 11/24/2022 | 7879 |
| V-W43 | W47 | 11/25/2022 | 5388 |
| V-W43 | W47 | 11/26/2022 | 7319 |
| V-W43 | W47 | 11/27/2022 | 8500 |
| V-W43 | W48 | 11/28/2022 | 9172 |
| V-W43 | W48 | 11/29/2022 | 7613 |
| V-W43 | W48 | 11/30/2022 | 9009 |
| V-W43 | W48 | 12/1/2022 | 3332 |
| V-W43 | W48 | 12/2/2022 | 8579 |
| V-W43 | W48 | 12/3/2022 | 6889 |
| V-W43 | W48 | 12/4/2022 | 9968 |
| V-W43 | W49 | 12/5/2022 | 9079 |
| V-W43 | W49 | 12/6/2022 | 3430 |
| V-W43 | W49 | 12/7/2022 | 3115 |
| V-W43 | W49 | 12/8/2022 | 9024 |
| V-W43 | W49 | 12/9/2022 | 7045 |
| V-W43 | W49 | 12/10/2022 | 4086 |
| V-W43 | W49 | 12/11/2022 | 5662 |
| V-W43 | W50 | 12/12/2022 | 3785 |
| V-W43 | W50 | 12/13/2022 | 9720 |
| V-W43 | W50 | 12/14/2022 | 8653 |
| V-W43 | W50 | 12/15/2022 | 7944 |
| V-W43 | W50 | 12/16/2022 | 6001 |
| V-W43 | W50 | 12/17/2022 | 4686 |
| V-W43 | W50 | 12/18/2022 | 5769 |
| V-W43 | W51 | 12/19/2022 | 7651 |
| V-W43 | W51 | 12/20/2022 | 4973 |
| V-W43 | W51 | 12/21/2022 | 7938 |
| V-W43 | W51 | 12/22/2022 | 9714 |
| V-W43 | W51 | 12/23/2022 | 5484 |
| V-W43 | W51 | 12/24/2022 | 4959 |
| V-W43 | W51 | 12/25/2022 | 3682 |
| V-W43 | W52 | 12/26/2022 | 5824 |
| V-W43 | W52 | 12/27/2022 | 7256 |
| V-W43 | W52 | 12/28/2022 | 8934 |
| V-W43 | W52 | 12/29/2022 | 8231 |
| V-W43 | W52 | 12/30/2022 | 6306 |
| V-W43 | W52 | 12/31/2022 | 4224 |
| V-W43 | W52 | 1/1/2023 | 9254 |
| V-W43 | W1 | 1/2/2023 | 5598 |
| V-W43 | W1 | 1/3/2023 | 8035 |
| V-W43 | W1 | 1/4/2023 | 8971 |
| V-W43 | W1 | 1/5/2023 | 8451 |
| V-W43 | W1 | 1/6/2023 | 4240 |
| V-W43 | W1 | 1/7/2023 | 9424 |
| V-W43 | W1 | 1/8/2023 | 5246 |
| V-W43 | W2 | 1/9/2023 | 3536 |
| V-W43 | W2 | 1/10/2023 | 3723 |
| V-W43 | W2 | 1/11/2023 | 6508 |
| V-W43 | W2 | 1/12/2023 | 8161 |
| V-W43 | W2 | 1/13/2023 | 3224 |
| V-W43 | W2 | 1/14/2023 | 5575 |
| V-W43 | W2 | 1/15/2023 | 8183 |
| V-W44 | W44 | 10/31/2022 | 6705 |
| V-W44 | W44 | 11/1/2022 | 4831 |
| V-W44 | W44 | 11/2/2022 | 6712 |
| V-W44 | W44 | 11/3/2022 | 9054 |
| V-W44 | W44 | 11/4/2022 | 4880 |
| V-W44 | W44 | 11/5/2022 | 9750 |
| V-W44 | W44 | 11/6/2022 | 8262 |
| V-W44 | W45 | 11/7/2022 | 6220 |
| V-W44 | W45 | 11/8/2022 | 6666 |
| V-W44 | W45 | 11/9/2022 | 3513 |
| V-W44 | W45 | 11/10/2022 | 6036 |
| V-W44 | W45 | 11/11/2022 | 5669 |
| V-W44 | W45 | 11/12/2022 | 3390 |
| V-W44 | W45 | 11/13/2022 | 5497 |
| V-W44 | W46 | 11/14/2022 | 9656 |
| V-W44 | W46 | 11/15/2022 | 6206 |
| V-W44 | W46 | 11/16/2022 | 6322 |
| V-W44 | W46 | 11/17/2022 | 9103 |
| V-W44 | W46 | 11/18/2022 | 5968 |
| V-W44 | W46 | 11/19/2022 | 7016 |
| V-W44 | W46 | 11/20/2022 | 3115 |
| V-W44 | W47 | 11/21/2022 | 6130 |
| V-W44 | W47 | 11/22/2022 | 7936 |
| V-W44 | W47 | 11/23/2022 | 9388 |
| V-W44 | W47 | 11/24/2022 | 6716 |
| V-W44 | W47 | 11/25/2022 | 3001 |
| V-W44 | W47 | 11/26/2022 | 4624 |
| V-W44 | W47 | 11/27/2022 | 7567 |
| V-W44 | W48 | 11/28/2022 | 9537 |
| V-W44 | W48 | 11/29/2022 | 4935 |
| V-W44 | W48 | 11/30/2022 | 9776 |
| V-W44 | W48 | 12/1/2022 | 8037 |
| V-W44 | W48 | 12/2/2022 | 7076 |
| V-W44 | W48 | 12/3/2022 | 7846 |
| V-W44 | W48 | 12/4/2022 | 4597 |
| V-W44 | W49 | 12/5/2022 | 8441 |
| V-W44 | W49 | 12/6/2022 | 6714 |
| V-W44 | W49 | 12/7/2022 | 6678 |
| V-W44 | W49 | 12/8/2022 | 4241 |
| V-W44 | W49 | 12/9/2022 | 5698 |
| V-W44 | W49 | 12/10/2022 | 7848 |
| V-W44 | W49 | 12/11/2022 | 4031 |
| V-W44 | W50 | 12/12/2022 | 8737 |
| V-W44 | W50 | 12/13/2022 | 7110 |
| V-W44 | W50 | 12/14/2022 | 3040 |
| V-W44 | W50 | 12/15/2022 | 3868 |
| V-W44 | W50 | 12/16/2022 | 5294 |
| V-W44 | W50 | 12/17/2022 | 4997 |
| V-W44 | W50 | 12/18/2022 | 9301 |
| V-W44 | W51 | 12/19/2022 | 5930 |
| V-W44 | W51 | 12/20/2022 | 4655 |
| V-W44 | W51 | 12/21/2022 | 6481 |
| V-W44 | W51 | 12/22/2022 | 3178 |
| V-W44 | W51 | 12/23/2022 | 9633 |
| V-W44 | W51 | 12/24/2022 | 4792 |
| V-W44 | W51 | 12/25/2022 | 7116 |
| V-W44 | W52 | 12/26/2022 | 5975 |
| V-W44 | W52 | 12/27/2022 | 8426 |
| V-W44 | W52 | 12/28/2022 | 4825 |
| V-W44 | W52 | 12/29/2022 | 5889 |
| V-W44 | W52 | 12/30/2022 | 6646 |
| V-W44 | W52 | 12/31/2022 | 3440 |
| V-W44 | W52 | 1/1/2023 | 5311 |
| V-W44 | W1 | 1/2/2023 | 5336 |
| V-W44 | W1 | 1/3/2023 | 7763 |
| V-W44 | W1 | 1/4/2023 | 9124 |
| V-W44 | W1 | 1/5/2023 | 3933 |
| V-W44 | W1 | 1/6/2023 | 8333 |
| V-W44 | W1 | 1/7/2023 | 3086 |
| V-W44 | W1 | 1/8/2023 | 3711 |
| V-W44 | W2 | 1/9/2023 | 6120 |
| V-W44 | W2 | 1/10/2023 | 4264 |
| V-W44 | W2 | 1/11/2023 | 3160 |
| V-W44 | W2 | 1/12/2023 | 7279 |
| V-W44 | W2 | 1/13/2023 | 4641 |
| V-W44 | W2 | 1/14/2023 | 3712 |
| V-W44 | W2 | 1/15/2023 | 9510 |
| V-W44 | W3 | 1/16/2023 | 9042 |
| V-W44 | W3 | 1/17/2023 | 4982 |
| V-W44 | W3 | 1/18/2023 | 3162 |
| V-W44 | W3 | 1/19/2023 | 9696 |
| V-W44 | W3 | 1/20/2023 | 8238 |
| V-W44 | W3 | 1/21/2023 | 9145 |
| V-W44 | W3 | 1/22/2023 | 7798 |
Hi @Khalefa ,
You may create a following measure. The calculation logic is to get the forecast values of the current week and the previous week according to the week version, respectively, and then get the percentage.
WOW =
VAR _CUR =
CALCULATE (
SUM ( 'Table'[Forecast] ),
FILTER (
ALLSELECTED ( 'Table' ),
[Week version] = MAX ( 'Table'[Week version] )
&& [Week] = MAX ( 'Table'[Week] )
)
)
VAR _PRE =
CALCULATE (
SUM ( 'Table'[Forecast] ),
FILTER (
ALLSELECTED ( 'Table' ),
[Week version] = MAX ( 'Table'[Week version] )
&& VALUE ( RIGHT ( [Week], LEN ( [Week] ) - 1 ) )
= VALUE ( RIGHT ( MAX ( 'Table'[Week] ), LEN ( MAX ( 'Table'[Week] ) ) - 1 ) ) - 1
)
)
RETURN
DIVIDE ( _CUR - _PRE, _PRE )
Best Regards,
Stephen Tao
If this post helps, then please consider Accept it as the solution to help the other members find it more quickly.
Thanks @Anonymous for the support
i still need to calculate the change% for a specific week in all week versions ( trendline)
by other means, if week 46 repeats in 3 versions ( v-43 , V-44, V-45,V-46 ) i need to know the change rate trend line :
- (Week 46 in V-44 - Week 46 in V-43 ) / Week 46 in V-43
-Then (Week 46 in V-45 - Week 46 in V-44 ) / Week 46 in V-44 etc.
Sorry the sample some how corrupted when I added the tables. If it is clear. Let me know
The Power BI Data Visualization World Championships is back! Get ahead of the game and start preparing now!