Power BI is turning 10, and we’re marking the occasion with a special community challenge. Use your creativity to tell a story, uncover trends, or highlight something unexpected.
Get startedJoin us for an expert-led overview of the tools and concepts you'll need to become a Certified Power BI Data Analyst and pass exam PL-300. Register now.
So I have a table with multiple dates and values.
I want those dates on a shared axis and want to plot a line plot.
X-Axis should have Year (Date)
Y-Axis should have Turnovers (Values)
how can this be done?
data example:
Companies House ID | Date 1 | Turnover 1 | Date 2 | Turnover 2 | Date 3 | Turnover 3 | Date 4 | Turnover 4 | Date 5 | Turnover 5 | Date 6 | Turnover 6 | Date 7 | Turnover 7 |
1079138 | 2010-10-31 | 5403555 | 2011-10-31 | 5759017 | 2012-10-31 | 6146374 | 2013-10-31 | 7137407 | 2014-10-31 | 8821632 | 2015-10-31 | 10837000 | 2016-10-31 | 12383000 |
1412766 | 2011-06-30 | 1745595 | 2012-06-30 | 1744935 | 2013-06-30 | 2012902 | 2014-06-30 | 2646056 | 2015-06-30 | 3322689 | 2016-06-30 | 3399342 | 2017-06-30 | 4222377 |
1553154 | 2009-06-30 | 5448715 | 2010-06-30 | 4680887 | 2011-06-30 | 5258245 | 2012-06-30 | 8095000 | 2013-06-30 | 11066000 | 2014-12-31 | 11770000 | 2015-12-31 | 2586469 |
1792304 | 2011-06-30 | 1512000 | 2012-06-30 | 2477000 | 2013-06-30 | 2512000 | 2014-06-30 | 2468000 | 2015-06-30 | 2273000 | 2016-06-30 | 2084000 | 2017-06-30 | 1903000 |
Solved! Go to Solution.
Hi @Anonymous ,
In Power Query Advance Editor:
let
Source = Table.FromRows(Json.Document(Binary.Decompress(Binary.FromText("bZJLDsIwDETv0jVI4799FsT9r0GqNE4FSN30yU7fTPp6HYQokjweB4PwHI/QeDGFmNnEtHFYgWJibuykLqETS+OgAXFNa+NMJhee2BoTUgLA5L45S8rJ34+hq8ThvrzgTzkXKNSsbHndsJbY8lr4nCnw8mrs6jBfXguLMHvW0tq4SvQ6JBorM0vElDUTslkLqkdMNYNsVd6bnsiM72jGlqw/0RJlXdaORgT35qNzvkqkOLtFl37xcfhIXVM3igX6060R9+YWYI34I8D36Vu3Z7r9+cYccrvyfUGpjXe3VJg/wvsD", BinaryEncoding.Base64), Compression.Deflate)), let _t = ((type nullable text) meta [Serialized.Text = true]) in type table [#"Companies House ID" = _t, #"Date 1" = _t, #"Turnover 1" = _t, #"Date 2" = _t, #"Turnover 2" = _t, #"Date 3" = _t, #"Turnover 3" = _t, #"Date 4" = _t, #"Turnover 4" = _t, #"Date 5" = _t, #"Turnover 5" = _t, #"Date 6" = _t, #"Turnover 6" = _t, #"Date 7" = _t, #"Turnover 7" = _t]),
#"Reordered Columns" = Table.ReorderColumns(Source,{"Companies House ID", "Date 1", "Date 2", "Date 3", "Date 4", "Date 5", "Date 6", "Date 7", "Turnover 1", "Turnover 2", "Turnover 3", "Turnover 4", "Turnover 5", "Turnover 6", "Turnover 7"}),
#"Changed Type" = Table.TransformColumnTypes(#"Reordered Columns",{{"Companies House ID", Int64.Type}, {"Date 1", type date}, {"Date 2", type date}, {"Date 3", type date}, {"Date 4", type date}, {"Date 5", type date}, {"Date 6", type date}, {"Date 7", type date}, {"Turnover 1", Int64.Type}, {"Turnover 2", Int64.Type}, {"Turnover 3", Int64.Type}, {"Turnover 4", Int64.Type}, {"Turnover 5", Int64.Type}, {"Turnover 6", Int64.Type}, {"Turnover 7", Int64.Type}}),
Count = 7,
DATES = List.FirstN(List.Skip(Table.ColumnNames(#"Changed Type")),Count),
Tables = let Cols = Table.ToColumns(#"Changed Type"), st = Cols{0}, cols = List.Zip(List.Split(List.Skip(Cols),Count)) in List.Transform(cols, each Table.FromColumns({st} & _, {"Companies House ID","Date","Turnover"})),
#"Added DATES" = Table.Combine(List.Transform({0..Count-1}, each Table.AddColumn(Tables{_}, "DATES", (r) => DATES{_}))),
#"Removed Columns" = Table.RemoveColumns(#"Added DATES",{"DATES"})
in
#"Removed Columns"
Best Regards,
Jay
Hi @Anonymous ,
In Power Query Advance Editor:
let
Source = Table.FromRows(Json.Document(Binary.Decompress(Binary.FromText("bZJLDsIwDETv0jVI4799FsT9r0GqNE4FSN30yU7fTPp6HYQokjweB4PwHI/QeDGFmNnEtHFYgWJibuykLqETS+OgAXFNa+NMJhee2BoTUgLA5L45S8rJ34+hq8ThvrzgTzkXKNSsbHndsJbY8lr4nCnw8mrs6jBfXguLMHvW0tq4SvQ6JBorM0vElDUTslkLqkdMNYNsVd6bnsiM72jGlqw/0RJlXdaORgT35qNzvkqkOLtFl37xcfhIXVM3igX6060R9+YWYI34I8D36Vu3Z7r9+cYccrvyfUGpjXe3VJg/wvsD", BinaryEncoding.Base64), Compression.Deflate)), let _t = ((type nullable text) meta [Serialized.Text = true]) in type table [#"Companies House ID" = _t, #"Date 1" = _t, #"Turnover 1" = _t, #"Date 2" = _t, #"Turnover 2" = _t, #"Date 3" = _t, #"Turnover 3" = _t, #"Date 4" = _t, #"Turnover 4" = _t, #"Date 5" = _t, #"Turnover 5" = _t, #"Date 6" = _t, #"Turnover 6" = _t, #"Date 7" = _t, #"Turnover 7" = _t]),
#"Reordered Columns" = Table.ReorderColumns(Source,{"Companies House ID", "Date 1", "Date 2", "Date 3", "Date 4", "Date 5", "Date 6", "Date 7", "Turnover 1", "Turnover 2", "Turnover 3", "Turnover 4", "Turnover 5", "Turnover 6", "Turnover 7"}),
#"Changed Type" = Table.TransformColumnTypes(#"Reordered Columns",{{"Companies House ID", Int64.Type}, {"Date 1", type date}, {"Date 2", type date}, {"Date 3", type date}, {"Date 4", type date}, {"Date 5", type date}, {"Date 6", type date}, {"Date 7", type date}, {"Turnover 1", Int64.Type}, {"Turnover 2", Int64.Type}, {"Turnover 3", Int64.Type}, {"Turnover 4", Int64.Type}, {"Turnover 5", Int64.Type}, {"Turnover 6", Int64.Type}, {"Turnover 7", Int64.Type}}),
Count = 7,
DATES = List.FirstN(List.Skip(Table.ColumnNames(#"Changed Type")),Count),
Tables = let Cols = Table.ToColumns(#"Changed Type"), st = Cols{0}, cols = List.Zip(List.Split(List.Skip(Cols),Count)) in List.Transform(cols, each Table.FromColumns({st} & _, {"Companies House ID","Date","Turnover"})),
#"Added DATES" = Table.Combine(List.Transform({0..Count-1}, each Table.AddColumn(Tables{_}, "DATES", (r) => DATES{_}))),
#"Removed Columns" = Table.RemoveColumns(#"Added DATES",{"DATES"})
in
#"Removed Columns"
Best Regards,
Jay
@Anonymous , First Unpivot the all columns other than Companies House ID, You will get attributes and value
Then split attributes using split by delimiters .
You will get date/turnover in one column. and 1,2,3,4 in another column
delete the later one. Then Pivot the attribute(part 1) and value again, You should get date and turnover
This is your chance to engage directly with the engineering team behind Fabric and Power BI. Share your experiences and shape the future.
Check out the June 2025 Power BI update to learn about new features.
User | Count |
---|---|
76 | |
74 | |
57 | |
38 | |
33 |
User | Count |
---|---|
70 | |
63 | |
55 | |
48 | |
46 |