Join us at FabCon Atlanta from March 16 - 20, 2026, for the ultimate Fabric, Power BI, AI and SQL community-led event. Save $200 with code FABCOMM.
Register now!The Power BI Data Visualization World Championships is back! It's time to submit your entry. Live now!
Hello all,
I'm newbie to PowerBI and I need the comunity help.
I have a table with 3 columns. The first column is "days" of July, the second column, the "hour" of a day when the temprature is recorderd and the third column "temperature" for each hour of a day.
I would like to count the number of rows on the"hour" column till the highest "tempreature" in reached for each day.
In other words I have to find out :
Please find below the data.
Thanks
Q007
| Day | Hour | Temperature |
| 17 | 0 | 15.49 |
| 17 | 1 | 14.72 |
| 17 | 2 | 14.04 |
| 17 | 8 | 14.76 |
| 17 | 9 | 16.91 |
| 17 | 10 | 18.58 |
| 17 | 11 | 20.18 |
| 17 | 12 | 21.57 |
| 17 | 13 | 22.8 |
| 17 | 14 | 23.84 |
| 17 | 15 | 24.58 |
| 17 | 16 | 24.99 |
| 17 | 17 | 24.24 |
| 17 | 18 | 23.92 |
| 17 | 19 | 23.48 |
| 17 | 20 | 22.94 |
| 17 | 21 | 21.44 |
| 17 | 22 | 19.91 |
| 17 | 23 | 19.03 |
| 18 | 0 | 18.53 |
| 18 | 1 | 16.39 |
| 18 | 2 | 14.45 |
| 18 | 3 | 12.73 |
| 18 | 10 | 19.8 |
| 18 | 11 | 21.21 |
| 18 | 12 | 20.49 |
| 18 | 13 | 19.68 |
| 18 | 14 | 19.94 |
| 18 | 15 | 20.95 |
| 18 | 16 | 18.63 |
| 18 | 17 | 17.71 |
| 18 | 18 | 16.58 |
| 18 | 19 | 15.39 |
| 18 | 20 | 14.56 |
| 18 | 21 | 13.49 |
| 18 | 22 | 12.59 |
| 18 | 23 | 12.69 |
| 19 | 6 | 11.28 |
| 19 | 7 | 12.17 |
| 19 | 8 | 13.08 |
| 19 | 9 | 14.41 |
| 19 | 10 | 15.59 |
| 19 | 11 | 15.73 |
| 19 | 12 | 15.5 |
| 19 | 13 | 14.8 |
| 19 | 14 | 14.4 |
| 19 | 15 | 13.51 |
| 19 | 16 | 12.78 |
| 19 | 17 | 12.36 |
| 19 | 18 | 12.29 |
| 19 | 19 | 12.65 |
| 19 | 20 | 12.82 |
| 19 | 21 | 12.41 |
| 19 | 22 | 11.87 |
| 19 | 23 | 11.81 |
| 20 | 0 | 11.92 |
| 20 | 1 | 12.11 |
| 20 | 2 | 12.37 |
| 20 | 3 | 12.55 |
| 20 | 4 | 12.17 |
| 20 | 5 | 11.17 |
| 20 | 6 | 11.99 |
| 20 | 7 | 12.71 |
| 20 | 8 | 13.94 |
| 20 | 9 | 16.19 |
| 20 | 10 | 18.24 |
| 20 | 16 | 21.3 |
| 20 | 17 | 21.95 |
| 20 | 18 | 21.13 |
| 20 | 19 | 21.1 |
| 20 | 20 | 20.56 |
| 20 | 21 | 19.26 |
| 20 | 22 | 18.71 |
| 20 | 23 | 17.93 |
| 21 | 0 | 17.22 |
| 21 | 1 | 17.01 |
| 21 | 2 | 16.28 |
| 21 | 3 | 15.46 |
| 21 | 4 | 14.7 |
| 21 | 5 | 14.09 |
| 21 | 6 | 13.93 |
| 21 | 7 | 15.04 |
| 21 | 8 | 17.26 |
| 21 | 9 | 19.16 |
| 21 | 10 | 20.43 |
| 21 | 11 | 21.64 |
| 21 | 12 | 22.65 |
| 21 | 13 | 23.57 |
| 21 | 14 | 24.32 |
| 21 | 15 | 24.87 |
| 21 | 21 | 20.6 |
| 21 | 22 | 17.92 |
| 21 | 23 | 16.34 |
| 22 | 0 | 15.14 |
| 22 | 1 | 14.19 |
| 22 | 2 | 13.52 |
| 22 | 3 | 12.81 |
| 22 | 4 | 11.96 |
| 22 | 5 | 11.03 |
| 22 | 6 | 10.78 |
| 22 | 7 | 14.29 |
| 22 | 10 | 22.53 |
| 22 | 11 | 24.5 |
| 22 | 12 | 26.14 |
| 22 | 13 | 27.48 |
| 22 | 14 | 28.41 |
| 22 | 15 | 29.13 |
| 22 | 16 | 29.61 |
| 22 | 17 | 30.02 |
| 22 | 18 | 30.1 |
| 22 | 19 | 29.48 |
| 22 | 20 | 28.14 |
| 22 | 21 | 24.45 |
| 22 | 22 | 22.01 |
| 22 | 23 | 20.94 |
| 23 | 0 | 19.69 |
| 23 | 1 | 18.71 |
| 23 | 2 | 17.89 |
| 23 | 3 | 16.57 |
| 23 | 4 | 15.58 |
| 23 | 5 | 14.8 |
| 23 | 6 | 14.43 |
| 23 | 7 | 17.86 |
| 23 | 8 | 22.07 |
| 23 | 9 | 25.09 |
| 23 | 10 | 27.29 |
| 23 | 14 | 33.04 |
| 23 | 15 | 33.76 |
| 23 | 16 | 34.15 |
| 23 | 17 | 34.34 |
| 23 | 18 | 34.26 |
| 23 | 19 | 33.59 |
| 23 | 20 | 32.11 |
| 23 | 21 | 29.8 |
| 23 | 22 | 27.79 |
| 23 | 23 | 25.78 |
| 24 | 0 | 24.17 |
| 24 | 1 | 22.37 |
| 24 | 2 | 21.16 |
| 24 | 10 | 23.57 |
| 24 | 11 | 27.68 |
| 24 | 12 | 29.26 |
| 24 | 13 | 29.15 |
| 24 | 14 | 29.82 |
| 24 | 15 | 29.85 |
| 24 | 16 | 29.44 |
| 24 | 17 | 28.47 |
| 24 | 18 | 26.85 |
| 24 | 19 | 24.72 |
| 24 | 20 | 21.18 |
| 24 | 21 | 17.77 |
| 24 | 22 | 16.79 |
| 24 | 23 | 16.2 |
Solved! Go to Solution.
@Anonymous
Try these MEASURES
File attached as well with your sample data
Max_Temp = Max(Table1[Temperature])
DataPoints_Till_MaxTemp =
VAR maxtemp = [Max_Temp]
VAR MyHour =
CALCULATE ( MIN ( Table1[Hour] ), Table1[Temperature] = maxtemp )
RETURN
COUNTROWS ( FILTER ( Table1, Table1[Hour] <= MyHour ) )
Total Data Points = Count(Table1[Temperature])
@Anonymous
What is your expected output with this sample data?
Hello,
My expection is to know:
Best
Q007
@Anonymous
Try these MEASURES
File attached as well with your sample data
Max_Temp = Max(Table1[Temperature])
DataPoints_Till_MaxTemp =
VAR maxtemp = [Max_Temp]
VAR MyHour =
CALCULATE ( MIN ( Table1[Hour] ), Table1[Temperature] = maxtemp )
RETURN
COUNTROWS ( FILTER ( Table1, Table1[Hour] <= MyHour ) )
Total Data Points = Count(Table1[Temperature])
Sure,
I have posted another question. Did you see it? This time I have two extra columns, country and city.
I would like to do the same thing as we did before but this time spit by town and country.
Best
Q
Thanks a lot
Now I have a table with 5 columns. The first column is "Country", the second column is "Town", third is "Days" of July, the fourth column, the "Hour" of a day when the temperature is recorded and the fifth column "temperature" for each hour of a day.
I would like to count the number of rows on the “hour" column till the highest "temperature" in reached for each day in any city and country.
My expectations are to know:
1. The max temperature in each given day, by town by country.
2. How many data points have been counted to get to the max temperature in each day?
3. How many data points we have for each day?
BestQ007
| Country | Town | Day | Hour | Temperature |
| Germany | Frankfurt | 17 | 0 | 15.49 |
| Germany | Frankfurt | 17 | 1 | 14.72 |
| Germany | Frankfurt | 17 | 2 | 14.04 |
| Germany | Frankfurt | 17 | 8 | 14.76 |
| Germany | Frankfurt | 17 | 9 | 16.91 |
| Germany | Frankfurt | 17 | 10 | 18.58 |
| Germany | Frankfurt | 17 | 11 | 20.18 |
| Germany | Frankfurt | 17 | 12 | 21.57 |
| Germany | Frankfurt | 17 | 13 | 22.8 |
| Germany | Frankfurt | 17 | 14 | 23.84 |
| Germany | Frankfurt | 17 | 15 | 24.58 |
| Germany | Frankfurt | 18 | 16 | 18.63 |
| Germany | Frankfurt | 18 | 17 | 17.71 |
| Germany | Frankfurt | 18 | 18 | 16.58 |
| Germany | Frankfurt | 18 | 19 | 15.39 |
| Germany | Frankfurt | 18 | 20 | 14.56 |
| Germany | Frankfurt | 18 | 21 | 13.49 |
| Germany | Frankfurt | 18 | 22 | 12.59 |
| Germany | Frankfurt | 18 | 23 | 12.69 |
| Germany | Frankfurt | 19 | 6 | 11.28 |
| Germany | Frankfurt | 19 | 7 | 12.17 |
| Germany | Frankfurt | 19 | 8 | 13.08 |
| Germany | Frankfurt | 19 | 9 | 14.41 |
| Germany | Frankfurt | 19 | 10 | 15.59 |
| Germany | Frankfurt | 19 | 11 | 15.73 |
| Germany | Frankfurt | 19 | 12 | 15.5 |
| Germany | Frankfurt | 19 | 13 | 14.8 |
| Germany | Frankfurt | 19 | 14 | 14.4 |
| Germany | Frankfurt | 19 | 15 | 13.51 |
| Germany | Frankfurt | 20 | 5 | 11.17 |
| Germany | Frankfurt | 20 | 6 | 11.99 |
| Germany | Frankfurt | 20 | 7 | 12.71 |
| Germany | Frankfurt | 20 | 8 | 13.94 |
| Germany | Frankfurt | 20 | 9 | 16.19 |
| Germany | Frankfurt | 20 | 10 | 18.24 |
| Germany | Frankfurt | 20 | 16 | 21.3 |
| Germany | Frankfurt | 20 | 17 | 21.95 |
| Germany | Frankfurt | 20 | 18 | 21.13 |
| Germany | Frankfurt | 20 | 19 | 21.1 |
| Germany | Frankfurt | 20 | 20 | 20.56 |
| Germany | Frankfurt | 20 | 21 | 19.26 |
| Germany | Frankfurt | 20 | 22 | 18.71 |
| Germany | Frankfurt | 20 | 23 | 17.93 |
| Germany | Frankfurt | 21 | 0 | 17.22 |
| Germany | Frankfurt | 21 | 1 | 17.01 |
| Germany | Frankfurt | 21 | 2 | 16.28 |
| Germany | Frankfurt | 21 | 3 | 15.46 |
| Germany | Frankfurt | 21 | 4 | 14.7 |
| Germany | Frankfurt | 21 | 5 | 14.09 |
| Germany | Frankfurt | 21 | 6 | 13.93 |
| Germany | Frankfurt | 21 | 7 | 15.04 |
| Germany | Frankfurt | 21 | 8 | 17.26 |
| Germany | Frankfurt | 21 | 9 | 19.16 |
| Germany | Frankfurt | 22 | 10 | 22.53 |
| Germany | Frankfurt | 22 | 11 | 24.5 |
| Germany | Frankfurt | 22 | 12 | 26.14 |
| Germany | Frankfurt | 22 | 13 | 27.48 |
| Germany | Frankfurt | 22 | 14 | 28.41 |
| Germany | Frankfurt | 22 | 15 | 29.13 |
| Germany | Frankfurt | 22 | 16 | 29.61 |
| Germany | Frankfurt | 22 | 17 | 30.02 |
| Germany | Frankfurt | 22 | 18 | 30.1 |
| Germany | Frankfurt | 22 | 19 | 29.48 |
| Germany | Frankfurt | 22 | 20 | 28.14 |
| Germany | Frankfurt | 22 | 21 | 24.45 |
| Germany | Frankfurt | 22 | 22 | 22.01 |
| Germany | Frankfurt | 22 | 23 | 20.94 |
| Germany | Frankfurt | 23 | 0 | 19.69 |
| Germany | Frankfurt | 23 | 1 | 18.71 |
| Germany | Frankfurt | 23 | 2 | 17.89 |
| Germany | Frankfurt | 23 | 3 | 16.57 |
| Germany | Frankfurt | 23 | 4 | 15.58 |
| Germany | Frankfurt | 23 | 5 | 14.8 |
| Germany | Frankfurt | 23 | 6 | 14.43 |
| Germany | Frankfurt | 23 | 7 | 17.86 |
| Germany | Frankfurt | 23 | 8 | 22.07 |
| Germany | Frankfurt | 23 | 9 | 25.09 |
| Germany | Frankfurt | 23 | 10 | 27.29 |
| Germany | Frankfurt | 23 | 14 | 33.04 |
| Germany | Frankfurt | 23 | 15 | 33.76 |
| Germany | Frankfurt | 23 | 16 | 34.15 |
| Germany | Frankfurt | 23 | 17 | 34.34 |
| Germany | Frankfurt | 23 | 18 | 34.26 |
| Germany | Frankfurt | 24 | 12 | 29.26 |
| Germany | Frankfurt | 24 | 13 | 29.15 |
| Germany | Frankfurt | 24 | 14 | 29.82 |
| Germany | Frankfurt | 24 | 15 | 29.85 |
| Germany | Frankfurt | 24 | 16 | 29.44 |
| Germany | Frankfurt | 24 | 17 | 28.47 |
| Germany | Frankfurt | 24 | 18 | 26.85 |
| Germany | Frankfurt | 24 | 19 | 24.72 |
| Germany | Frankfurt | 24 | 20 | 21.18 |
| Germany | Frankfurt | 24 | 21 | 17.77 |
| Germany | Frankfurt | 24 | 22 | 16.79 |
| Germany | Frankfurt | 24 | 23 | 16.2 |
| UK | London | 10 | 0 | 12.4 |
| UK | London | 10 | 1 | 11.8 |
| UK | London | 10 | 2 | 11.2 |
| UK | London | 10 | 8 | 11.8 |
| UK | London | 10 | 16 | 20 |
| UK | London | 10 | 17 | 19.4 |
| UK | London | 10 | 18 | 19.1 |
| UK | London | 10 | 19 | 18.8 |
| UK | London | 10 | 20 | 18.4 |
| UK | London | 10 | 21 | 17.2 |
| UK | London | 10 | 22 | 15.9 |
| UK | London | 10 | 23 | 15.2 |
| UK | London | 11 | 0 | 14.8 |
| UK | London | 11 | 1 | 13.1 |
| UK | London | 11 | 2 | 11.6 |
| UK | London | 11 | 3 | 10.2 |
| UK | London | 11 | 10 | 15.8 |
| UK | London | 11 | 11 | 17 |
| UK | London | 11 | 12 | 16.4 |
| UK | London | 11 | 13 | 15.7 |
| UK | London | 11 | 14 | 16 |
| UK | London | 11 | 15 | 16.8 |
| UK | London | 11 | 16 | 14.9 |
| UK | London | 11 | 17 | 14.2 |
| UK | London | 11 | 18 | 13.3 |
| UK | London | 12 | 16 | 10.2 |
| UK | London | 12 | 17 | 9.9 |
| UK | London | 12 | 18 | 9.8 |
| UK | London | 12 | 19 | 10.1 |
| UK | London | 12 | 20 | 10.3 |
| UK | London | 12 | 21 | 9.9 |
| UK | London | 12 | 22 | 9.5 |
| UK | London | 12 | 23 | 9.4 |
| UK | London | 13 | 0 | 9.5 |
| UK | London | 13 | 1 | 9.7 |
| UK | London | 13 | 2 | 9.9 |
| UK | London | 13 | 3 | 10 |
| UK | London | 13 | 4 | 9.7 |
| UK | London | 13 | 5 | 8.9 |
| UK | London | 13 | 6 | 9.6 |
| UK | London | 13 | 7 | 10.2 |
| UK | London | 13 | 8 | 11.2 |
| UK | London | 14 | 3 | 12.4 |
| UK | London | 14 | 4 | 11.8 |
| UK | London | 14 | 5 | 11.3 |
| UK | London | 14 | 6 | 11.1 |
| UK | London | 14 | 7 | 12 |
| UK | London | 14 | 8 | 13.8 |
| UK | London | 14 | 9 | 15.3 |
| UK | London | 14 | 10 | 16.3 |
| UK | London | 14 | 11 | 17.3 |
| UK | London | 14 | 12 | 18.1 |
| UK | London | 14 | 13 | 18.9 |
| UK | London | 15 | 4 | 9.6 |
| UK | London | 15 | 5 | 8.8 |
| UK | London | 15 | 6 | 8.6 |
| UK | London | 15 | 7 | 11.4 |
| UK | London | 15 | 10 | 18 |
| UK | London | 15 | 11 | 19.6 |
| UK | London | 15 | 12 | 20.9 |
| UK | London | 15 | 13 | 22 |
| UK | London | 15 | 14 | 22.7 |
| UK | London | 15 | 15 | 23.3 |
| UK | London | 15 | 16 | 23.7 |
| UK | London | 15 | 17 | 24 |
| UK | London | 15 | 22 | 17.6 |
| UK | London | 15 | 23 | 16.8 |
| UK | London | 16 | 0 | 15.8 |
| UK | London | 16 | 1 | 15 |
| UK | London | 16 | 2 | 14.3 |
| UK | London | 16 | 3 | 13.3 |
| UK | London | 16 | 4 | 12.5 |
| UK | London | 16 | 5 | 11.8 |
| UK | London | 16 | 6 | 11.5 |
| UK | London | 16 | 16 | 27.3 |
| UK | London | 16 | 17 | 27.5 |
| UK | London | 16 | 18 | 27.4 |
| UK | London | 16 | 19 | 26.9 |
| UK | London | 16 | 20 | 25.7 |
| UK | London | 16 | 21 | 23.8 |
| UK | London | 16 | 22 | 22.2 |
| UK | London | 16 | 23 | 20.6 |
| UK | London | 17 | 0 | 19.3 |
| UK | London | 17 | 1 | 17.9 |
| UK | London | 17 | 2 | 16.9 |
| UK | London | 17 | 10 | 18.9 |
| UK | London | 17 | 11 | 22.1 |
| UK | London | 17 | 12 | 23.4 |
| UK | London | 17 | 13 | 23.3 |
| UK | London | 17 | 14 | 23.9 |
| UK | London | 17 | 15 | 23.9 |
| UK | London | 17 | 16 | 23.6 |
| UK | London | 17 | 17 | 22.8 |
Zubair,
Thanks a lot for your solution. I will let you know if that works on my dataset or not.
Best
Qmars
The Power BI Data Visualization World Championships is back! It's time to submit your entry.
| User | Count |
|---|---|
| 52 | |
| 41 | |
| 32 | |
| 26 | |
| 24 |
| User | Count |
|---|---|
| 133 | |
| 118 | |
| 56 | |
| 43 | |
| 43 |