Share feedback directly with Fabric product managers, participate in targeted research studies and influence the Fabric roadmap.
Sign up nowGet Fabric certified for FREE! Don't miss your chance! Learn more
Hello all,
I'm newbie to PowerBI and I need the comunity help.
I have a table with 3 columns. The first column is "days" of July, the second column, the "hour" of a day when the temprature is recorderd and the third column "temperature" for each hour of a day.
I would like to count the number of rows on the"hour" column till the highest "tempreature" in reached for each day.
In other words I have to find out :
Please find below the data.
Thanks
Q007
| Day | Hour | Temperature |
| 17 | 0 | 15.49 |
| 17 | 1 | 14.72 |
| 17 | 2 | 14.04 |
| 17 | 8 | 14.76 |
| 17 | 9 | 16.91 |
| 17 | 10 | 18.58 |
| 17 | 11 | 20.18 |
| 17 | 12 | 21.57 |
| 17 | 13 | 22.8 |
| 17 | 14 | 23.84 |
| 17 | 15 | 24.58 |
| 17 | 16 | 24.99 |
| 17 | 17 | 24.24 |
| 17 | 18 | 23.92 |
| 17 | 19 | 23.48 |
| 17 | 20 | 22.94 |
| 17 | 21 | 21.44 |
| 17 | 22 | 19.91 |
| 17 | 23 | 19.03 |
| 18 | 0 | 18.53 |
| 18 | 1 | 16.39 |
| 18 | 2 | 14.45 |
| 18 | 3 | 12.73 |
| 18 | 10 | 19.8 |
| 18 | 11 | 21.21 |
| 18 | 12 | 20.49 |
| 18 | 13 | 19.68 |
| 18 | 14 | 19.94 |
| 18 | 15 | 20.95 |
| 18 | 16 | 18.63 |
| 18 | 17 | 17.71 |
| 18 | 18 | 16.58 |
| 18 | 19 | 15.39 |
| 18 | 20 | 14.56 |
| 18 | 21 | 13.49 |
| 18 | 22 | 12.59 |
| 18 | 23 | 12.69 |
| 19 | 6 | 11.28 |
| 19 | 7 | 12.17 |
| 19 | 8 | 13.08 |
| 19 | 9 | 14.41 |
| 19 | 10 | 15.59 |
| 19 | 11 | 15.73 |
| 19 | 12 | 15.5 |
| 19 | 13 | 14.8 |
| 19 | 14 | 14.4 |
| 19 | 15 | 13.51 |
| 19 | 16 | 12.78 |
| 19 | 17 | 12.36 |
| 19 | 18 | 12.29 |
| 19 | 19 | 12.65 |
| 19 | 20 | 12.82 |
| 19 | 21 | 12.41 |
| 19 | 22 | 11.87 |
| 19 | 23 | 11.81 |
| 20 | 0 | 11.92 |
| 20 | 1 | 12.11 |
| 20 | 2 | 12.37 |
| 20 | 3 | 12.55 |
| 20 | 4 | 12.17 |
| 20 | 5 | 11.17 |
| 20 | 6 | 11.99 |
| 20 | 7 | 12.71 |
| 20 | 8 | 13.94 |
| 20 | 9 | 16.19 |
| 20 | 10 | 18.24 |
| 20 | 16 | 21.3 |
| 20 | 17 | 21.95 |
| 20 | 18 | 21.13 |
| 20 | 19 | 21.1 |
| 20 | 20 | 20.56 |
| 20 | 21 | 19.26 |
| 20 | 22 | 18.71 |
| 20 | 23 | 17.93 |
| 21 | 0 | 17.22 |
| 21 | 1 | 17.01 |
| 21 | 2 | 16.28 |
| 21 | 3 | 15.46 |
| 21 | 4 | 14.7 |
| 21 | 5 | 14.09 |
| 21 | 6 | 13.93 |
| 21 | 7 | 15.04 |
| 21 | 8 | 17.26 |
| 21 | 9 | 19.16 |
| 21 | 10 | 20.43 |
| 21 | 11 | 21.64 |
| 21 | 12 | 22.65 |
| 21 | 13 | 23.57 |
| 21 | 14 | 24.32 |
| 21 | 15 | 24.87 |
| 21 | 21 | 20.6 |
| 21 | 22 | 17.92 |
| 21 | 23 | 16.34 |
| 22 | 0 | 15.14 |
| 22 | 1 | 14.19 |
| 22 | 2 | 13.52 |
| 22 | 3 | 12.81 |
| 22 | 4 | 11.96 |
| 22 | 5 | 11.03 |
| 22 | 6 | 10.78 |
| 22 | 7 | 14.29 |
| 22 | 10 | 22.53 |
| 22 | 11 | 24.5 |
| 22 | 12 | 26.14 |
| 22 | 13 | 27.48 |
| 22 | 14 | 28.41 |
| 22 | 15 | 29.13 |
| 22 | 16 | 29.61 |
| 22 | 17 | 30.02 |
| 22 | 18 | 30.1 |
| 22 | 19 | 29.48 |
| 22 | 20 | 28.14 |
| 22 | 21 | 24.45 |
| 22 | 22 | 22.01 |
| 22 | 23 | 20.94 |
| 23 | 0 | 19.69 |
| 23 | 1 | 18.71 |
| 23 | 2 | 17.89 |
| 23 | 3 | 16.57 |
| 23 | 4 | 15.58 |
| 23 | 5 | 14.8 |
| 23 | 6 | 14.43 |
| 23 | 7 | 17.86 |
| 23 | 8 | 22.07 |
| 23 | 9 | 25.09 |
| 23 | 10 | 27.29 |
| 23 | 14 | 33.04 |
| 23 | 15 | 33.76 |
| 23 | 16 | 34.15 |
| 23 | 17 | 34.34 |
| 23 | 18 | 34.26 |
| 23 | 19 | 33.59 |
| 23 | 20 | 32.11 |
| 23 | 21 | 29.8 |
| 23 | 22 | 27.79 |
| 23 | 23 | 25.78 |
| 24 | 0 | 24.17 |
| 24 | 1 | 22.37 |
| 24 | 2 | 21.16 |
| 24 | 10 | 23.57 |
| 24 | 11 | 27.68 |
| 24 | 12 | 29.26 |
| 24 | 13 | 29.15 |
| 24 | 14 | 29.82 |
| 24 | 15 | 29.85 |
| 24 | 16 | 29.44 |
| 24 | 17 | 28.47 |
| 24 | 18 | 26.85 |
| 24 | 19 | 24.72 |
| 24 | 20 | 21.18 |
| 24 | 21 | 17.77 |
| 24 | 22 | 16.79 |
| 24 | 23 | 16.2 |
Solved! Go to Solution.
@Anonymous
Try these MEASURES
File attached as well with your sample data
Max_Temp = Max(Table1[Temperature])
DataPoints_Till_MaxTemp =
VAR maxtemp = [Max_Temp]
VAR MyHour =
CALCULATE ( MIN ( Table1[Hour] ), Table1[Temperature] = maxtemp )
RETURN
COUNTROWS ( FILTER ( Table1, Table1[Hour] <= MyHour ) )
Total Data Points = Count(Table1[Temperature])
@Anonymous
What is your expected output with this sample data?
Hello,
My expection is to know:
Best
Q007
@Anonymous
Try these MEASURES
File attached as well with your sample data
Max_Temp = Max(Table1[Temperature])
DataPoints_Till_MaxTemp =
VAR maxtemp = [Max_Temp]
VAR MyHour =
CALCULATE ( MIN ( Table1[Hour] ), Table1[Temperature] = maxtemp )
RETURN
COUNTROWS ( FILTER ( Table1, Table1[Hour] <= MyHour ) )
Total Data Points = Count(Table1[Temperature])
Sure,
I have posted another question. Did you see it? This time I have two extra columns, country and city.
I would like to do the same thing as we did before but this time spit by town and country.
Best
Q
Thanks a lot
Now I have a table with 5 columns. The first column is "Country", the second column is "Town", third is "Days" of July, the fourth column, the "Hour" of a day when the temperature is recorded and the fifth column "temperature" for each hour of a day.
I would like to count the number of rows on the “hour" column till the highest "temperature" in reached for each day in any city and country.
My expectations are to know:
1. The max temperature in each given day, by town by country.
2. How many data points have been counted to get to the max temperature in each day?
3. How many data points we have for each day?
BestQ007
| Country | Town | Day | Hour | Temperature |
| Germany | Frankfurt | 17 | 0 | 15.49 |
| Germany | Frankfurt | 17 | 1 | 14.72 |
| Germany | Frankfurt | 17 | 2 | 14.04 |
| Germany | Frankfurt | 17 | 8 | 14.76 |
| Germany | Frankfurt | 17 | 9 | 16.91 |
| Germany | Frankfurt | 17 | 10 | 18.58 |
| Germany | Frankfurt | 17 | 11 | 20.18 |
| Germany | Frankfurt | 17 | 12 | 21.57 |
| Germany | Frankfurt | 17 | 13 | 22.8 |
| Germany | Frankfurt | 17 | 14 | 23.84 |
| Germany | Frankfurt | 17 | 15 | 24.58 |
| Germany | Frankfurt | 18 | 16 | 18.63 |
| Germany | Frankfurt | 18 | 17 | 17.71 |
| Germany | Frankfurt | 18 | 18 | 16.58 |
| Germany | Frankfurt | 18 | 19 | 15.39 |
| Germany | Frankfurt | 18 | 20 | 14.56 |
| Germany | Frankfurt | 18 | 21 | 13.49 |
| Germany | Frankfurt | 18 | 22 | 12.59 |
| Germany | Frankfurt | 18 | 23 | 12.69 |
| Germany | Frankfurt | 19 | 6 | 11.28 |
| Germany | Frankfurt | 19 | 7 | 12.17 |
| Germany | Frankfurt | 19 | 8 | 13.08 |
| Germany | Frankfurt | 19 | 9 | 14.41 |
| Germany | Frankfurt | 19 | 10 | 15.59 |
| Germany | Frankfurt | 19 | 11 | 15.73 |
| Germany | Frankfurt | 19 | 12 | 15.5 |
| Germany | Frankfurt | 19 | 13 | 14.8 |
| Germany | Frankfurt | 19 | 14 | 14.4 |
| Germany | Frankfurt | 19 | 15 | 13.51 |
| Germany | Frankfurt | 20 | 5 | 11.17 |
| Germany | Frankfurt | 20 | 6 | 11.99 |
| Germany | Frankfurt | 20 | 7 | 12.71 |
| Germany | Frankfurt | 20 | 8 | 13.94 |
| Germany | Frankfurt | 20 | 9 | 16.19 |
| Germany | Frankfurt | 20 | 10 | 18.24 |
| Germany | Frankfurt | 20 | 16 | 21.3 |
| Germany | Frankfurt | 20 | 17 | 21.95 |
| Germany | Frankfurt | 20 | 18 | 21.13 |
| Germany | Frankfurt | 20 | 19 | 21.1 |
| Germany | Frankfurt | 20 | 20 | 20.56 |
| Germany | Frankfurt | 20 | 21 | 19.26 |
| Germany | Frankfurt | 20 | 22 | 18.71 |
| Germany | Frankfurt | 20 | 23 | 17.93 |
| Germany | Frankfurt | 21 | 0 | 17.22 |
| Germany | Frankfurt | 21 | 1 | 17.01 |
| Germany | Frankfurt | 21 | 2 | 16.28 |
| Germany | Frankfurt | 21 | 3 | 15.46 |
| Germany | Frankfurt | 21 | 4 | 14.7 |
| Germany | Frankfurt | 21 | 5 | 14.09 |
| Germany | Frankfurt | 21 | 6 | 13.93 |
| Germany | Frankfurt | 21 | 7 | 15.04 |
| Germany | Frankfurt | 21 | 8 | 17.26 |
| Germany | Frankfurt | 21 | 9 | 19.16 |
| Germany | Frankfurt | 22 | 10 | 22.53 |
| Germany | Frankfurt | 22 | 11 | 24.5 |
| Germany | Frankfurt | 22 | 12 | 26.14 |
| Germany | Frankfurt | 22 | 13 | 27.48 |
| Germany | Frankfurt | 22 | 14 | 28.41 |
| Germany | Frankfurt | 22 | 15 | 29.13 |
| Germany | Frankfurt | 22 | 16 | 29.61 |
| Germany | Frankfurt | 22 | 17 | 30.02 |
| Germany | Frankfurt | 22 | 18 | 30.1 |
| Germany | Frankfurt | 22 | 19 | 29.48 |
| Germany | Frankfurt | 22 | 20 | 28.14 |
| Germany | Frankfurt | 22 | 21 | 24.45 |
| Germany | Frankfurt | 22 | 22 | 22.01 |
| Germany | Frankfurt | 22 | 23 | 20.94 |
| Germany | Frankfurt | 23 | 0 | 19.69 |
| Germany | Frankfurt | 23 | 1 | 18.71 |
| Germany | Frankfurt | 23 | 2 | 17.89 |
| Germany | Frankfurt | 23 | 3 | 16.57 |
| Germany | Frankfurt | 23 | 4 | 15.58 |
| Germany | Frankfurt | 23 | 5 | 14.8 |
| Germany | Frankfurt | 23 | 6 | 14.43 |
| Germany | Frankfurt | 23 | 7 | 17.86 |
| Germany | Frankfurt | 23 | 8 | 22.07 |
| Germany | Frankfurt | 23 | 9 | 25.09 |
| Germany | Frankfurt | 23 | 10 | 27.29 |
| Germany | Frankfurt | 23 | 14 | 33.04 |
| Germany | Frankfurt | 23 | 15 | 33.76 |
| Germany | Frankfurt | 23 | 16 | 34.15 |
| Germany | Frankfurt | 23 | 17 | 34.34 |
| Germany | Frankfurt | 23 | 18 | 34.26 |
| Germany | Frankfurt | 24 | 12 | 29.26 |
| Germany | Frankfurt | 24 | 13 | 29.15 |
| Germany | Frankfurt | 24 | 14 | 29.82 |
| Germany | Frankfurt | 24 | 15 | 29.85 |
| Germany | Frankfurt | 24 | 16 | 29.44 |
| Germany | Frankfurt | 24 | 17 | 28.47 |
| Germany | Frankfurt | 24 | 18 | 26.85 |
| Germany | Frankfurt | 24 | 19 | 24.72 |
| Germany | Frankfurt | 24 | 20 | 21.18 |
| Germany | Frankfurt | 24 | 21 | 17.77 |
| Germany | Frankfurt | 24 | 22 | 16.79 |
| Germany | Frankfurt | 24 | 23 | 16.2 |
| UK | London | 10 | 0 | 12.4 |
| UK | London | 10 | 1 | 11.8 |
| UK | London | 10 | 2 | 11.2 |
| UK | London | 10 | 8 | 11.8 |
| UK | London | 10 | 16 | 20 |
| UK | London | 10 | 17 | 19.4 |
| UK | London | 10 | 18 | 19.1 |
| UK | London | 10 | 19 | 18.8 |
| UK | London | 10 | 20 | 18.4 |
| UK | London | 10 | 21 | 17.2 |
| UK | London | 10 | 22 | 15.9 |
| UK | London | 10 | 23 | 15.2 |
| UK | London | 11 | 0 | 14.8 |
| UK | London | 11 | 1 | 13.1 |
| UK | London | 11 | 2 | 11.6 |
| UK | London | 11 | 3 | 10.2 |
| UK | London | 11 | 10 | 15.8 |
| UK | London | 11 | 11 | 17 |
| UK | London | 11 | 12 | 16.4 |
| UK | London | 11 | 13 | 15.7 |
| UK | London | 11 | 14 | 16 |
| UK | London | 11 | 15 | 16.8 |
| UK | London | 11 | 16 | 14.9 |
| UK | London | 11 | 17 | 14.2 |
| UK | London | 11 | 18 | 13.3 |
| UK | London | 12 | 16 | 10.2 |
| UK | London | 12 | 17 | 9.9 |
| UK | London | 12 | 18 | 9.8 |
| UK | London | 12 | 19 | 10.1 |
| UK | London | 12 | 20 | 10.3 |
| UK | London | 12 | 21 | 9.9 |
| UK | London | 12 | 22 | 9.5 |
| UK | London | 12 | 23 | 9.4 |
| UK | London | 13 | 0 | 9.5 |
| UK | London | 13 | 1 | 9.7 |
| UK | London | 13 | 2 | 9.9 |
| UK | London | 13 | 3 | 10 |
| UK | London | 13 | 4 | 9.7 |
| UK | London | 13 | 5 | 8.9 |
| UK | London | 13 | 6 | 9.6 |
| UK | London | 13 | 7 | 10.2 |
| UK | London | 13 | 8 | 11.2 |
| UK | London | 14 | 3 | 12.4 |
| UK | London | 14 | 4 | 11.8 |
| UK | London | 14 | 5 | 11.3 |
| UK | London | 14 | 6 | 11.1 |
| UK | London | 14 | 7 | 12 |
| UK | London | 14 | 8 | 13.8 |
| UK | London | 14 | 9 | 15.3 |
| UK | London | 14 | 10 | 16.3 |
| UK | London | 14 | 11 | 17.3 |
| UK | London | 14 | 12 | 18.1 |
| UK | London | 14 | 13 | 18.9 |
| UK | London | 15 | 4 | 9.6 |
| UK | London | 15 | 5 | 8.8 |
| UK | London | 15 | 6 | 8.6 |
| UK | London | 15 | 7 | 11.4 |
| UK | London | 15 | 10 | 18 |
| UK | London | 15 | 11 | 19.6 |
| UK | London | 15 | 12 | 20.9 |
| UK | London | 15 | 13 | 22 |
| UK | London | 15 | 14 | 22.7 |
| UK | London | 15 | 15 | 23.3 |
| UK | London | 15 | 16 | 23.7 |
| UK | London | 15 | 17 | 24 |
| UK | London | 15 | 22 | 17.6 |
| UK | London | 15 | 23 | 16.8 |
| UK | London | 16 | 0 | 15.8 |
| UK | London | 16 | 1 | 15 |
| UK | London | 16 | 2 | 14.3 |
| UK | London | 16 | 3 | 13.3 |
| UK | London | 16 | 4 | 12.5 |
| UK | London | 16 | 5 | 11.8 |
| UK | London | 16 | 6 | 11.5 |
| UK | London | 16 | 16 | 27.3 |
| UK | London | 16 | 17 | 27.5 |
| UK | London | 16 | 18 | 27.4 |
| UK | London | 16 | 19 | 26.9 |
| UK | London | 16 | 20 | 25.7 |
| UK | London | 16 | 21 | 23.8 |
| UK | London | 16 | 22 | 22.2 |
| UK | London | 16 | 23 | 20.6 |
| UK | London | 17 | 0 | 19.3 |
| UK | London | 17 | 1 | 17.9 |
| UK | London | 17 | 2 | 16.9 |
| UK | London | 17 | 10 | 18.9 |
| UK | London | 17 | 11 | 22.1 |
| UK | London | 17 | 12 | 23.4 |
| UK | London | 17 | 13 | 23.3 |
| UK | London | 17 | 14 | 23.9 |
| UK | London | 17 | 15 | 23.9 |
| UK | London | 17 | 16 | 23.6 |
| UK | London | 17 | 17 | 22.8 |
Zubair,
Thanks a lot for your solution. I will let you know if that works on my dataset or not.
Best
Qmars
If you love stickers, then you will definitely want to check out our Community Sticker Challenge!
Check out the January 2026 Power BI update to learn about new features.
| User | Count |
|---|---|
| 64 | |
| 63 | |
| 48 | |
| 21 | |
| 18 |
| User | Count |
|---|---|
| 119 | |
| 116 | |
| 38 | |
| 36 | |
| 27 |