Join us at FabCon Atlanta from March 16 - 20, 2026, for the ultimate Fabric, Power BI, AI and SQL community-led event. Save $200 with code FABCOMM.
Register now!The Power BI Data Visualization World Championships is back! Get ahead of the game and start preparing now! Learn more
Hello!
I using the following dax function to find the average Std Dev across all groups.
Standard deviation of VALUES average per GROUP =
AVERAGEX(
KEEPFILTERS(VALUES('GROUP')),
CALCULATE(STDEV.P('VALUES'))
)
When I use this measure on a number of categories I recieve the following table:
There is no blanks so I am having difficulty finding out where this NaN is coming from.
When I filter the data to a category with a NaN value I recieve the following table and surprise the NaN value disappears.
How might I fix this?
Any help would be greatly appreciated!
Hi @carter,
Can you share a sample of your data? The "NaN" could be raised by the function STDEV.P.
Best Regards,
Dale
Hi Dale (@v-jiascu-msft)
Here is some sample data:
Thanks,
Carter
| Category | Group | Value |
| 1.043 | -45000 | -45010.1 |
| 1.043 | -45000 | -45002.4 |
| 1.043 | -45000 | -45002 |
| 1.043 | -45000 | -44999 |
| 1.043 | -45000 | -44992.1 |
| 1.044 | -45000 | -45010.1 |
| 1.044 | -45000 | -44999.3 |
| 2.001 | -45000 | -45010.1 |
| 2.001 | -45000 | -45000.8 |
| 2.001 | -45000 | -44999.6 |
| 2.004 | -45000 | -45010.1 |
| 2.004 | -45000 | -45006.4 |
| 2.004 | -45000 | -45004.3 |
| 2.004 | -45000 | -44999.6 |
| 2.008 | -45000 | -45010.1 |
| 2.008 | -45000 | -45003.6 |
| 2.008 | -45000 | -45003 |
| 2.008 | -45000 | -45002.8 |
| 2.008 | -45000 | -45002.6 |
| 2.008 | -45000 | -44997.3 |
| 1.043 | -40000 | -40013.5 |
| 1.043 | -40000 | -40004.1 |
| 1.043 | -40000 | -40003.4 |
| 1.043 | -40000 | -40000.8 |
| 1.043 | -40000 | -39996.9 |
| 1.043 | -40000 | -39996.3 |
| 1.043 | -40000 | -39995.4 |
| 1.043 | -40000 | -39995.1 |
| 1.043 | -40000 | -39993.2 |
| 1.044 | -40000 | -40013.5 |
| 1.044 | -40000 | -40000.4 |
| 1.044 | -40000 | -39996.9 |
| 2.001 | -40000 | -40013.5 |
| 2.001 | -40000 | -40002.7 |
| 2.004 | -40000 | -40013.5 |
| 2.004 | -40000 | -39999.2 |
| 2.008 | -40000 | -40013.5 |
| 2.008 | -40000 | -40004 |
| 2.008 | -40000 | -40002.7 |
| 2.008 | -40000 | -40002 |
| 2.008 | -40000 | -39996.9 |
| 1.043 | -30000 | -30020.4 |
| 1.043 | -30000 | -30007.3 |
| 1.043 | -30000 | -30002 |
| 1.043 | -30000 | -29998.9 |
| 1.043 | -30000 | -29994.6 |
| 1.043 | -30000 | -29990.4 |
| 1.044 | -30000 | -30020.4 |
| 2.001 | -30000 | -30020.4 |
| 2.001 | -30000 | -29998.2 |
| 2.001 | -30000 | -29997.2 |
| 2.001 | -30000 | -29996.8 |
| 2.004 | -30000 | -30020.4 |
| 2.004 | -30000 | -30008.3 |
| 2.008 | -30000 | -30020.4 |
| 2.008 | -30000 | -30006.4 |
| 2.008 | -30000 | -30005.9 |
| 2.008 | -30000 | -30003.5 |
| 2.008 | -30000 | -30001.2 |
| 2.008 | -30000 | -30001 |
| 2.008 | -30000 | -29999 |
| 2.008 | -30000 | -29998.5 |
| 1.038 | -20000 | -19999.9 |
| 1.038 | -20000 | -19999.3 |
| 1.038 | -20000 | -19999.2 |
| 1.038 | -20000 | -19997.2 |
| 1.038 | -20000 | -19995.7 |
| 1.038 | -20000 | -19993 |
| 1.039 | -20000 | -20000.8 |
| 1.039 | -20000 | -19999.9 |
| 1.039 | -20000 | -19999.1 |
| 1.039 | -20000 | -19999 |
| 1.039 | -20000 | -19997.2 |
| 1.039 | -20000 | -19996.5 |
| 1.039 | -20000 | -19993.9 |
| 1.039 | -20000 | -19993 |
| 1.039 | -20000 | -19991.3 |
| 1.04 | -20000 | -20001.5 |
| 1.04 | -20000 | -20000.6 |
| 1.04 | -20000 | -19999.9 |
| 1.04 | -20000 | -19998.2 |
| 1.04 | -20000 | -19997.2 |
| 1.04 | -20000 | -19988 |
| 1.042 | -20000 | -19999.9 |
| 1.042 | -20000 | -19997.7 |
| 1.043 | -20000 | -19999.9 |
| 1.043 | -20000 | -19997.7 |
| 1.043 | -20000 | -19997.2 |
| 1.043 | -20000 | -19996.2 |
| 1.043 | -20000 | -19995.2 |
| 1.043 | -20000 | -19989.5 |
| 1.044 | -20000 | -19999.9 |
| 1.044 | -20000 | -19997.2 |
| 2.001 | -20000 | -19999.9 |
| 2.001 | -20000 | -19999.3 |
| 2.001 | -20000 | -19997.4 |
| 2.001 | -20000 | -19997.2 |
| 2.001 | -20000 | -19997.2 |
| 2.001 | -20000 | -19995.7 |
| 2.004 | -20000 | -19999.9 |
| 2.004 | -20000 | -19997.2 |
| 2.004 | -20000 | -19996.9 |
| 2.005 | -20000 | -19999.9 |
| 2.007 | -20000 | -19999.9 |
| 2.007 | -20000 | -19998 |
| 2.007 | -20000 | -19499.7 |
| 2.008 | -20000 | -20027.2 |
| 2.008 | -20000 | -20003.4 |
| 2.008 | -20000 | -20001.7 |
| 2.008 | -20000 | -20001.6 |
| 2.008 | -20000 | -20000.2 |
Hi @carter,
Can you share the pbix file? You can delete the private parts first. I can't reproduce the same result with your sample data. Just see from the formula √[∑(x - x̃)²/n], it seems no possibilities to get such results.
Best Regards,
Dale
The Power BI Data Visualization World Championships is back! Get ahead of the game and start preparing now!
| User | Count |
|---|---|
| 39 | |
| 37 | |
| 33 | |
| 33 | |
| 29 |
| User | Count |
|---|---|
| 134 | |
| 96 | |
| 78 | |
| 67 | |
| 65 |