Join us at FabCon Atlanta from March 16 - 20, 2026, for the ultimate Fabric, Power BI, AI and SQL community-led event. Save $200 with code FABCOMM.
Register now!The Power BI Data Visualization World Championships is back! Get ahead of the game and start preparing now! Learn more
Hello PowerBI Users,
I am aiming to replicated in powerbi small visuals below.
Each visual is based on a region, each column is a year, and for each year 3 meaures are stacked
Solved! Go to Solution.
Hi @youngja_66
We have this option with a stacked column chart << multiples :
In your scenario you need to put :
The region as "small multiples"
Year on X-axis
and measures on Y-axis
If this post helps, then please consider Accepting it as the solution to help the other members find it more quickly
Hi @youngja_66
We have this option with a stacked column chart << multiples :
In your scenario you need to put :
The region as "small multiples"
Year on X-axis
and measures on Y-axis
If this post helps, then please consider Accepting it as the solution to help the other members find it more quickly
Thank you for your response!
The measure for some of the years eg. 2007, 2013, 2017, 2020 are within the fact table, but year measures in between are calculated e.g. 2008 = 2007 + (2013-2007) * 1/6 .
2007,2013,2017,2020 measure is dervied directly from the fact table
e.g. 2008
If i put the x axis as 'year' very odd output
I'm thinking I am going to have to use DAX to create a pivot table similar to this where I can calc the meaures for the in between years?
Hi @youngja_66
Unfortunately, I can't understand the problems of the model from the pictures.
Please provide sample data that covers your issue or question completely, in a usable format (not as a screenshot).
https://community.powerbi.com/t5/Community-Blog/How-to-provide-sample-data-in-the-Power-BI-Forum/ba-...
Please show the expected outcome based on the sample data you provided.
https://community.powerbi.com/t5/Desktop/How-to-Get-Your-Question-Answered-Quickly/m-p/1447523
Example Fact Table Structure:
| Value | Unique_ID | Orig_Ct | NSW_ID | LLS_ID | LGA_ID | IBRA_ID | SVTM_vForm_ID | Ind_Ct | Area | Min | Max | Range | Mean | Std | Sum | Year | Indicator |
| 2290 | EC_2007_2290 | 51705 | 1 | 10 | 103 | 8 | 15 | 51696 | 418737600 | 0 | 0.944843054 | 0.944843054 | 0.687336094 | 0.127962689 | 35532.52673 | 2007 | Ecological Condition |
| 2295 | EC_2007_2295 | 4 | 1 | 10 | 103 | 8 | 9 | 4 | 32400 | 0.411207795 | 0.636495113 | 0.225287318 | 0.545719996 | 0.08301727 | 2.182879984 | 2007 | Ecological Condition |
| 2290 | EC_2013_2290 | 51705 | 1 | 10 | 103 | 8 | 15 | 51657 | 418421700 | 0.21449241 | 0.946917593 | 0.732425183 | 0.740838624 | 0.087592803 | 38269.50081 | 2013 | Ecological Condition |
| 2295 | EC_2013_2295 | 4 | 1 | 10 | 103 | 8 | 9 | 4 | 32400 | 0.6188851 | 0.813755989 | 0.194870889 | 0.727531433 | 0.076697191 | 2.910125732 | 2013 | Ecological Condition |
| 2290 | EC_2017_2290 | 51705 | 1 | 10 | 103 | 8 | 15 | 51690 | 418689000 | 0.015094439 | 0.948723376 | 0.933628936 | 0.762080524 | 0.071695783 | 39391.9423 | 2017 | Ecological Condition |
| 2295 | EC_2017_2295 | 4 | 1 | 10 | 103 | 8 | 9 | 4 | 32400 | 0.732422769 | 0.835702419 | 0.10327965 | 0.789653838 | 0.037326436 | 3.158615351 | 2017 | Ecological Condition |
| 2290 | EC_2020_2290 | 51705 | 1 | 10 | 103 | 8 | 15 | 51690 | 418689000 | 0.001159304 | 0.948723376 | 0.947564072 | 0.412688293 | 0.277582108 | 21331.85789 | 2020 | Ecological Condition |
| 2295 | EC_2020_2295 | 4 | 1 | 10 | 103 | 8 | 9 | 4 | 32400 | 0.356333315 | 0.787673414 | 0.431340098 | 0.486190997 | 0.175087057 | 1.944763988 | 2020 | Ecological Condition |
| 2290 | ECC_2007_2290 | 51705 | 1 | 10 | 103 | 8 | 15 | 51696 | 418737600 | 0.324601471 | 0.758608401 | 0.434006929 | 0.55558939 | 0.084664126 | 28721.7491 | 2007 | Ecological Carrying Capacity |
| 2295 | ECC_2007_2295 | 4 | 1 | 10 | 103 | 8 | 9 | 4 | 32400 | 0.450964749 | 0.525487542 | 0.074522793 | 0.49036146 | 0.029460963 | 1.961445838 | 2007 | Ecological Carrying Capacity |
| 2290 | ECC_2007_2290 | 51705 | 1 | 10 | 103 | 8 | 15 | 51657 | 418421700 | 0.381683677 | 0.773083746 | 0.391400069 | 0.620271764 | 0.065237538 | 32041.3785 | 2013 | Ecological Carrying Capacity |
| 2295 | ECC_2007_2295 | 4 | 1 | 10 | 103 | 8 | 9 | 4 | 32400 | 0.567748368 | 0.687787235 | 0.120038867 | 0.649554774 | 0.048170151 | 2.598219097 | 2013 | Ecological Carrying Capacity |
| 2290 | ECC_2017_2290 | 51705 | 1 | 10 | 103 | 8 | 15 | 51690 | 418689000 | 0.4077034 | 0.776736081 | 0.369032681 | 0.643455697 | 0.056506326 | 33260.22498 | 2017 | Ecological Carrying Capacity |
| 2295 | ECC_2017_2295 | 4 | 1 | 10 | 103 | 8 | 9 | 4 | 32400 | 0.641881466 | 0.716000795 | 0.074119329 | 0.689931825 | 0.028902589 | 2.759727299 | 2017 | Ecological Carrying Capacity |
| 2290 | ECC_2020_2290 | 51705 | 1 | 10 | 103 | 8 | 15 | 51690 | 418689000 | 0.074755304 | 0.751456201 | 0.676700898 | 0.355372447 | 0.190074305 | 18369.20181 | 2020 | Ecological Carrying Capacity |
| 2295 | ECC_2020_2295 | 4 | 1 | 10 | 103 | 8 | 9 | 4 | 32400 | 0.232444331 | 0.639404893 | 0.406960562 | 0.338427275 | 0.173808419 | 1.353709102 | 2020 | Ecological Carrying Capacity |
| 115 | EC_2007_115 | 2078 | 1 | 5 | 77 | 9 | 12 | 2078 | 16831800 | 0.029066242 | 0.699744403 | 0.670678161 | 0.44236294 | 0.08950457 | 919.2301893 | 2007 | Ecological Condition |
| 116 | EC_2007_116 | 673439 | 1 | 5 | 77 | 9 | 1 | 673389 | 5454450900 | 0.0190027 | 0.82767725 | 0.80867455 | 0.136503701 | 0.150043629 | 91920.09097 | 2007 | Ecological Condition |
| 115 | EC_2013_115 | 2078 | 1 | 5 | 77 | 9 | 12 | 2078 | 16831800 | 0.031203886 | 0.592478871 | 0.561274985 | 0.428333057 | 0.074106383 | 890.0760921 | 2013 | Ecological Condition |
| 116 | EC_2013_116 | 673439 | 1 | 5 | 77 | 9 | 1 | 673389 | 5454450900 | 0.009607106 | 0.844982028 | 0.835374922 | 0.130955547 | 0.14048723 | 88184.02502 | 2013 | Ecological Condition |
| 115 | EC_2017_115 | 2078 | 1 | 5 | 77 | 9 | 12 | 2078 | 16831800 | 0.052943852 | 0.619355738 | 0.566411886 | 0.405781585 | 0.068066642 | 843.2141332 | 2017 | Ecological Condition |
| 116 | EC_2017_116 | 673439 | 1 | 5 | 77 | 9 | 1 | 673389 | 5454450900 | 0.019842796 | 0.831962824 | 0.812120028 | 0.142165591 | 0.128297757 | 95732.74517 | 2017 | Ecological Condition |
| 115 | EC_2020_115 | 2078 | 1 | 5 | 77 | 9 | 12 | 2078 | 16831800 | 0.052943852 | 0.619355738 | 0.566411886 | 0.405781585 | 0.068066642 | 843.2141332 | 2020 | Ecological Condition |
| 116 | EC_2020_116 | 673439 | 1 | 5 | 77 | 9 | 1 | 673389 | 5454450900 | 0.019842796 | 0.831962824 | 0.812120028 | 0.142165591 | 0.128297757 | 95732.74517 | 2020 | Ecological Condition |
| 115 | ECC_2007_115 | 2078 | 1 | 5 | 77 | 9 | 12 | 2078 | 16831800 | 0.085629694 | 0.324878395 | 0.2392487 | 0.231679868 | 0.031909827 | 481.4307658 | 2007 | Ecological Carrying Capacity |
| 116 | ECC_2007_116 | 673439 | 1 | 5 | 77 | 9 | 1 | 673389 | 5454450900 | 0.03279813 | 0.559352219 | 0.526554089 | 0.111690946 | 0.058144725 | 75211.45448 | 2007 | Ecological Carrying Capacity |
| 115 | ECC_2007_115 | 2078 | 1 | 5 | 77 | 9 | 12 | 2078 | 16831800 | 0.08314655 | 0.263643265 | 0.180496715 | 0.224547295 | 0.024705304 | 466.6092789 | 2013 | Ecological Carrying Capacity |
| 116 | ECC_2007_116 | 673439 | 1 | 5 | 77 | 9 | 1 | 673389 | 5454450900 | 0.03077851 | 0.579967737 | 0.549189227 | 0.106883898 | 0.05925736 | 71974.44125 | 2013 | Ecological Carrying Capacity |
| 115 | ECC_2017_115 | 2078 | 1 | 5 | 77 | 9 | 12 | 2078 | 16831800 | 0.082945466 | 0.253764421 | 0.170818955 | 0.212137274 | 0.021501182 | 440.8212553 | 2017 | Ecological Carrying Capacity |
| 116 | ECC_2017_116 | 673439 | 1 | 5 | 77 | 9 | 1 | 673389 | 5454450900 | 0.039400052 | 0.578844965 | 0.539444912 | 0.106433479 | 0.054607638 | 71671.13409 | 2017 | Ecological Carrying Capacity |
| 115 | ECC_2020_115 | 2078 | 1 | 5 | 77 | 9 | 12 | 2078 | 16831800 | 0.082945466 | 0.253764421 | 0.170818955 | 0.212137274 | 0.021501182 | 440.8212549 | 2020 | Ecological Carrying Capacity |
| 116 | ECC_2020_116 | 673439 | 1 | 5 | 77 | 9 | 1 | 673389 | 5454450900 | 0.039400052 | 0.578792155 | 0.539392103 | 0.106292542 | 0.054483909 | 71576.22868 | 2020 | Ecological Carrying Capacity |
If this was done in excel and example is piovt of the above table
Columns 2008 - 2012 are simply a calculation between 2007 & 2013 i.e. interpolated
Columns 2007, 2013, 2017, 2020 are in the fact table
| IBRA_ID | Indicator | 2007 | 2013 | 2017 | 2020 | 2008 | 2009 | 2010 | 2011 | 2012 |
| 8 | Ecological Carrying Capacity | 0.555584 | 0.620274 | 0.643459 | 0.355371 | 0.566366 | 0.577148 | 0.587929 | 0.598711 | 0.609492 |
| 8 | Ecological Condition | 0.687325 | 0.740838 | 0.762083 | 0.412694 | 0.696244 | 0.705163 | 0.714081 | 0.723 | 0.731919 |
| 9 | Ecological Carrying Capacity | 0.11206 | 0.107246 | 0.106759 | 0.106618 | 0.111258 | 0.110455 | 0.109653 | 0.108851 | 0.108048 |
| 9 | Ecological Condition | 0.137445 | 0.13187 | 0.142977 | 0.142977 | 0.136516 | 0.135587 | 0.134658 | 0.133728 | 0.132799 |
Expected Small Visuals are based on IBRA_ID, Year. Stacked graph with each stack representing a single year of the indicator column
At the moment in powerbi, I create measurses for 2007, 2013, 2017, 2020 for each indcator
e.g.
The Power BI Data Visualization World Championships is back! Get ahead of the game and start preparing now!
| User | Count |
|---|---|
| 41 | |
| 38 | |
| 36 | |
| 30 | |
| 28 |
| User | Count |
|---|---|
| 128 | |
| 88 | |
| 79 | |
| 67 | |
| 62 |