Skip to main content
cancel
Showing results for 
Search instead for 
Did you mean: 

The Power BI Data Visualization World Championships is back! Get ahead of the game and start preparing now! Learn more

Reply
youngja_66
Frequent Visitor

Multiple Stacked Small Visuals based on years and region

Hello PowerBI Users,

 

I am aiming to replicated in powerbi small visuals below.

Each visual is based on a region, each column is a year, and for each year 3 meaures are stacked

 

 

youngja_66_0-1693543128414.png

 

1 ACCEPTED SOLUTION
Ritaf1983
Super User
Super User

Hi @youngja_66 
We have this option with a stacked column chart << multiples :

Ritaf1983_0-1693642070395.png

In your scenario you need to put :
The region as "small multiples"
Year on X-axis
and measures on Y-axis
If this post helps, then please consider Accepting it as the solution to help the other members find it more quickly

Regards,
Rita Fainshtein | Microsoft MVP
https://www.linkedin.com/in/rita-fainshtein/
Blog : https://www.madeiradata.com/profile/ritaf/profile

View solution in original post

5 REPLIES 5
Ritaf1983
Super User
Super User

Hi @youngja_66 
We have this option with a stacked column chart << multiples :

Ritaf1983_0-1693642070395.png

In your scenario you need to put :
The region as "small multiples"
Year on X-axis
and measures on Y-axis
If this post helps, then please consider Accepting it as the solution to help the other members find it more quickly

Regards,
Rita Fainshtein | Microsoft MVP
https://www.linkedin.com/in/rita-fainshtein/
Blog : https://www.madeiradata.com/profile/ritaf/profile

Thank you for your response!

The measure for some of the years eg. 2007, 2013, 2017, 2020 are within the fact table, but year measures in between are calculated e.g. 2008 = 2007 + (2013-2007) * 1/6 . 

2007,2013,2017,2020 measure is dervied directly from the fact table

youngja_66_0-1693786792060.png

 

e.g. 2008

youngja_66_1-1693786839615.png

 

If i put the x axis as 'year' very odd output

youngja_66_2-1693786935309.png

 

I'm thinking I am going to have to use DAX to create a pivot table similar to this where I can calc the meaures for the in between years?

youngja_66_3-1693787571559.png

 

Hi @youngja_66 

Unfortunately, I can't understand the problems of the model from the pictures.

Please provide sample data that covers your issue or question completely, in a usable format (not as a screenshot).
https://community.powerbi.com/t5/Community-Blog/How-to-provide-sample-data-in-the-Power-BI-Forum/ba-...
Please show the expected outcome based on the sample data you provided.

https://community.powerbi.com/t5/Desktop/How-to-Get-Your-Question-Answered-Quickly/m-p/1447523

Regards,
Rita Fainshtein | Microsoft MVP
https://www.linkedin.com/in/rita-fainshtein/
Blog : https://www.madeiradata.com/profile/ritaf/profile

Example Fact Table Structure:

ValueUnique_IDOrig_CtNSW_IDLLS_IDLGA_IDIBRA_IDSVTM_vForm_IDInd_CtAreaMinMaxRangeMeanStdSumYearIndicator
2290EC_2007_2290517051101038155169641873760000.9448430540.9448430540.6873360940.12796268935532.526732007Ecological Condition
2295EC_2007_22954110103894324000.4112077950.6364951130.2252873180.5457199960.083017272.1828799842007Ecological Condition
2290EC_2013_229051705110103815516574184217000.214492410.9469175930.7324251830.7408386240.08759280338269.500812013Ecological Condition
2295EC_2013_22954110103894324000.61888510.8137559890.1948708890.7275314330.0766971912.9101257322013Ecological Condition
2290EC_2017_229051705110103815516904186890000.0150944390.9487233760.9336289360.7620805240.07169578339391.94232017Ecological Condition
2295EC_2017_22954110103894324000.7324227690.8357024190.103279650.7896538380.0373264363.1586153512017Ecological Condition
2290EC_2020_229051705110103815516904186890000.0011593040.9487233760.9475640720.4126882930.27758210821331.857892020Ecological Condition
2295EC_2020_22954110103894324000.3563333150.7876734140.4313400980.4861909970.1750870571.9447639882020Ecological Condition
2290ECC_2007_229051705110103815516964187376000.3246014710.7586084010.4340069290.555589390.08466412628721.74912007Ecological Carrying Capacity
2295ECC_2007_22954110103894324000.4509647490.5254875420.0745227930.490361460.0294609631.9614458382007Ecological Carrying Capacity
2290ECC_2007_229051705110103815516574184217000.3816836770.7730837460.3914000690.6202717640.06523753832041.37852013Ecological Carrying Capacity
2295ECC_2007_22954110103894324000.5677483680.6877872350.1200388670.6495547740.0481701512.5982190972013Ecological Carrying Capacity
2290ECC_2017_229051705110103815516904186890000.40770340.7767360810.3690326810.6434556970.05650632633260.224982017Ecological Carrying Capacity
2295ECC_2017_22954110103894324000.6418814660.7160007950.0741193290.6899318250.0289025892.7597272992017Ecological Carrying Capacity
2290ECC_2020_229051705110103815516904186890000.0747553040.7514562010.6767008980.3553724470.19007430518369.201812020Ecological Carrying Capacity
2295ECC_2020_22954110103894324000.2324443310.6394048930.4069605620.3384272750.1738084191.3537091022020Ecological Carrying Capacity
115EC_2007_115207815779122078168318000.0290662420.6997444030.6706781610.442362940.08950457919.23018932007Ecological Condition
116EC_2007_11667343915779167338954544509000.01900270.827677250.808674550.1365037010.15004362991920.090972007Ecological Condition
115EC_2013_115207815779122078168318000.0312038860.5924788710.5612749850.4283330570.074106383890.07609212013Ecological Condition
116EC_2013_11667343915779167338954544509000.0096071060.8449820280.8353749220.1309555470.1404872388184.025022013Ecological Condition
115EC_2017_115207815779122078168318000.0529438520.6193557380.5664118860.4057815850.068066642843.21413322017Ecological Condition
116EC_2017_11667343915779167338954544509000.0198427960.8319628240.8121200280.1421655910.12829775795732.745172017Ecological Condition
115EC_2020_115207815779122078168318000.0529438520.6193557380.5664118860.4057815850.068066642843.21413322020Ecological Condition
116EC_2020_11667343915779167338954544509000.0198427960.8319628240.8121200280.1421655910.12829775795732.745172020Ecological Condition
115ECC_2007_115207815779122078168318000.0856296940.3248783950.23924870.2316798680.031909827481.43076582007Ecological Carrying Capacity
116ECC_2007_11667343915779167338954544509000.032798130.5593522190.5265540890.1116909460.05814472575211.454482007Ecological Carrying Capacity
115ECC_2007_115207815779122078168318000.083146550.2636432650.1804967150.2245472950.024705304466.60927892013Ecological Carrying Capacity
116ECC_2007_11667343915779167338954544509000.030778510.5799677370.5491892270.1068838980.0592573671974.441252013Ecological Carrying Capacity
115ECC_2017_115207815779122078168318000.0829454660.2537644210.1708189550.2121372740.021501182440.82125532017Ecological Carrying Capacity
116ECC_2017_11667343915779167338954544509000.0394000520.5788449650.5394449120.1064334790.05460763871671.134092017Ecological Carrying Capacity
115ECC_2020_115207815779122078168318000.0829454660.2537644210.1708189550.2121372740.021501182440.82125492020Ecological Carrying Capacity
116ECC_2020_11667343915779167338954544509000.0394000520.5787921550.5393921030.1062925420.05448390971576.228682020Ecological Carrying Capacity

 

If this was done in excel and example is piovt of the above table

Columns 2008 - 2012 are simply a calculation between 2007 & 2013 i.e. interpolated

Columns 2007, 2013, 2017, 2020 are in the fact table 

IBRA_IDIndicator200720132017202020082009201020112012
8Ecological Carrying Capacity0.5555840.6202740.6434590.3553710.5663660.5771480.5879290.5987110.609492
8Ecological Condition0.6873250.7408380.7620830.4126940.6962440.7051630.7140810.7230.731919
9Ecological Carrying Capacity0.112060.1072460.1067590.1066180.1112580.1104550.1096530.1088510.108048
9Ecological Condition0.1374450.131870.1429770.1429770.1365160.1355870.1346580.1337280.132799

 

Expected Small Visuals are based on IBRA_ID, Year.  Stacked graph with each stack representing a single year of the indicator column

 

youngja_66_0-1693801225029.png

 

At the moment in powerbi, I create measurses for 2007, 2013, 2017, 2020 for each indcator

e.g. 

EC 2007 =
VAR _SumOfCount = CALCULATE(SUM('tbl_FACT'[Ind_Ct]), 'tbl_FACT'[Year] IN { 2007 }, 'tbl_FACT'[Indicator] IN { "Ecological Condition"})
VAR _SumOfSum = CALCULATE(SUM('tbl_FACT'[Sum]), 'tbl_FACT'[Year] IN { 2007 }, 'tbl_FACT'[Indicator] IN { "Ecological Condition"})
   
VAR Result =
    DIVIDE( _SumOfSum, _SumOfCount )
RETURN
    Result
 
For the interpolated years 2008 - 2012 i create a measure e.g.
EC 2008 = CALCULATE([EC 2007] + ([EC 2013]-[EC 2007]) * (1/6))
 
Hope this makes more sense

Helpful resources

Announcements
Power BI DataViz World Championships

Power BI Dataviz World Championships

The Power BI Data Visualization World Championships is back! Get ahead of the game and start preparing now!

December 2025 Power BI Update Carousel

Power BI Monthly Update - December 2025

Check out the December 2025 Power BI Holiday Recap!

FabCon Atlanta 2026 carousel

FabCon Atlanta 2026

Join us at FabCon Atlanta, March 16-20, for the ultimate Fabric, Power BI, AI and SQL community-led event. Save $200 with code FABCOMM.