Microsoft is giving away 50,000 FREE Microsoft Certification exam vouchers. Get Fabric certified for FREE! Learn more
I have a problem I am struggling to solve. I have a table with items sold in 4 different columns and the total sales of the item sold in that column in 4 different columns. (See Below).
I need to calculate the total sales of Each item (Bikes, Trains, etc.) regardless of the column its in.
For example,"Bikes" is reference in Item column 1, 2, & in column 3 twice, thus would need to sum the values in Value column 1 (Row 2, "556"), Value column 2(row 3, "3815"), and Value Column 3(row 4 "2546" & row 6 "644") to See "Bikes" = 7561.
This would need to be done for Each of the items sold.
Item 1 | Item 2 | Item 3 | Item 4 | Value 1 | Value 2 | Value 3 | Value 4 |
Bikes | Trains | 556 | 1600 | ||||
Trains | Bikes | Wheels | 1986 | 3815 | 2065 | ||
Wheels | Spokes | Bikes | Trains | 2648 | 46 | 2546 | 16000 |
Spokes | Wheels | 11 | 298 | ||||
Diamonds | Rivets | Bikes | 256 | 645 | 644 | ||
Rivets | Bikes | Traoms | Wheels | 6448 | 23445 | 2205 | 1785 |
Thank you for any help you can provide.
Solved! Go to Solution.
I think you will be better off transforming our table into 2 columns (items and Values) using Power Query
File attached as well
let Source = Table.FromRows(Json.Document(Binary.Decompress(Binary.FromText("ZY7BDsIgEER/peHcA9BdpFfjF6iJB8KhiSQSbWnU+P2yKKtND+xsyLyZdU5s4zU8RCuO9yFOtDTfh2jyVEZK/vSt+/kqeLqEcKug6i1RnVWYRUuDDLLvMKcPuarWBmwWoAiNUPtl4RnjoNqpyN7bxZm7OIxpOpNtH1/h+d/XlHhKN4BlAnMrcz4ujYvabKcu3UGhtZYkamNReP8G", BinaryEncoding.Base64), Compression.Deflate)), let _t = ((type text) meta [Serialized.Text = true]) in type table [#"Item 1" = _t, #"Item 2" = _t, #"Item 3" = _t, #"Item 4" = _t, #"Value 1" = _t, #"Value 2" = _t, #"Value 3" = _t, #"Value 4" = _t]), step = Table.TransformColumnTypes(Source,{{"Item 1", type text}, {"Item 2", type text}, {"Item 3", type text}, {"Item 4", type text}, {"Value 1", Int64.Type}, {"Value 2", Int64.Type}, {"Value 3", Int64.Type}, {"Value 4", Int64.Type}}), G1 = Table.FromColumns({step[Item 1],step[Value 1]},{"Items","Value"}), G2 = Table.FromColumns({step[Item 2],step[Value 2]},{"Items","Value"}), G3 = Table.FromColumns({step[Item 3],step[Value 3]},{"Items","Value"}), G4 = Table.FromColumns({step[Item 4],step[Value 4]},{"Items","Value"}), Final=Table.Combine({G1,G2,G3,G4}), #"Filtered Rows" = Table.SelectRows(Final, each ([Items] <> " ") and ([Value] <> null)) in #"Filtered Rows"
I think you will be better off transforming our table into 2 columns (items and Values) using Power Query
File attached as well
let Source = Table.FromRows(Json.Document(Binary.Decompress(Binary.FromText("ZY7BDsIgEER/peHcA9BdpFfjF6iJB8KhiSQSbWnU+P2yKKtND+xsyLyZdU5s4zU8RCuO9yFOtDTfh2jyVEZK/vSt+/kqeLqEcKug6i1RnVWYRUuDDLLvMKcPuarWBmwWoAiNUPtl4RnjoNqpyN7bxZm7OIxpOpNtH1/h+d/XlHhKN4BlAnMrcz4ujYvabKcu3UGhtZYkamNReP8G", BinaryEncoding.Base64), Compression.Deflate)), let _t = ((type text) meta [Serialized.Text = true]) in type table [#"Item 1" = _t, #"Item 2" = _t, #"Item 3" = _t, #"Item 4" = _t, #"Value 1" = _t, #"Value 2" = _t, #"Value 3" = _t, #"Value 4" = _t]), step = Table.TransformColumnTypes(Source,{{"Item 1", type text}, {"Item 2", type text}, {"Item 3", type text}, {"Item 4", type text}, {"Value 1", Int64.Type}, {"Value 2", Int64.Type}, {"Value 3", Int64.Type}, {"Value 4", Int64.Type}}), G1 = Table.FromColumns({step[Item 1],step[Value 1]},{"Items","Value"}), G2 = Table.FromColumns({step[Item 2],step[Value 2]},{"Items","Value"}), G3 = Table.FromColumns({step[Item 3],step[Value 3]},{"Items","Value"}), G4 = Table.FromColumns({step[Item 4],step[Value 4]},{"Items","Value"}), Final=Table.Combine({G1,G2,G3,G4}), #"Filtered Rows" = Table.SelectRows(Final, each ([Items] <> " ") and ([Value] <> null)) in #"Filtered Rows"
Check out the April 2025 Power BI update to learn about new features.
Explore and share Fabric Notebooks to boost Power BI insights in the new community notebooks gallery.
User | Count |
---|---|
105 | |
69 | |
48 | |
47 | |
47 |