Skip to main content
cancel
Showing results for 
Search instead for 
Did you mean: 

Microsoft is giving away 50,000 FREE Microsoft Certification exam vouchers. Get Fabric certified for FREE! Learn more

Reply
demonfc
Microsoft Employee
Microsoft Employee

Measure help

I have a problem I am struggling to solve. I have a table with items sold in 4 different columns and the total sales of the item sold in that column in 4 different columns. (See Below). 

 

I need to calculate the total sales of Each item (Bikes, Trains, etc.) regardless of the column its in.

 

For example,"Bikes" is reference in Item column 1, 2, & in column 3 twice, thus would need to sum the values in Value column 1 (Row 2, "556"), Value column 2(row 3, "3815"), and Value Column 3(row 4 "2546" & row 6 "644") to See "Bikes" = 7561. 

 

This would need to be done for Each of the items sold. 

 

Item 1Item 2Item 3Item 4Value 1Value 2Value 3Value 4
BikesTrains  5561600  
TrainsBikesWheels 198638152065 
WheelsSpokesBikesTrains264846254616000
SpokesWheels  11298  
DiamondsRivetsBikes 256645644 
RivetsBikesTraomsWheels64482344522051785

 

Thank you for any help you can provide. 

1 ACCEPTED SOLUTION
Zubair_Muhammad
Community Champion
Community Champion

@demonfc

 

I think you will be better off transforming our table into 2 columns (items and Values) using Power Query

File attached as well

 

let
    Source = Table.FromRows(Json.Document(Binary.Decompress(Binary.FromText("ZY7BDsIgEER/peHcA9BdpFfjF6iJB8KhiSQSbWnU+P2yKKtND+xsyLyZdU5s4zU8RCuO9yFOtDTfh2jyVEZK/vSt+/kqeLqEcKug6i1RnVWYRUuDDLLvMKcPuarWBmwWoAiNUPtl4RnjoNqpyN7bxZm7OIxpOpNtH1/h+d/XlHhKN4BlAnMrcz4ujYvabKcu3UGhtZYkamNReP8G", BinaryEncoding.Base64), Compression.Deflate)), let _t = ((type text) meta [Serialized.Text = true]) in type table [#"Item 1" = _t, #"Item 2" = _t, #"Item 3" = _t, #"Item 4" = _t, #"Value 1" = _t, #"Value 2" = _t, #"Value 3" = _t, #"Value 4" = _t]),
    step = Table.TransformColumnTypes(Source,{{"Item 1", type text}, {"Item 2", type text}, {"Item 3", type text}, {"Item 4", type text}, {"Value 1", Int64.Type}, {"Value 2", Int64.Type}, {"Value 3", Int64.Type}, {"Value 4", Int64.Type}}),
    G1 = Table.FromColumns({step[Item 1],step[Value 1]},{"Items","Value"}),
    G2 = Table.FromColumns({step[Item 2],step[Value 2]},{"Items","Value"}),
    G3 = Table.FromColumns({step[Item 3],step[Value 3]},{"Items","Value"}),
    G4 = Table.FromColumns({step[Item 4],step[Value 4]},{"Items","Value"}),
    Final=Table.Combine({G1,G2,G3,G4}),
    #"Filtered Rows" = Table.SelectRows(Final, each ([Items] <> " ") and ([Value] <> null))
in
    #"Filtered Rows"

View solution in original post

1 REPLY 1
Zubair_Muhammad
Community Champion
Community Champion

@demonfc

 

I think you will be better off transforming our table into 2 columns (items and Values) using Power Query

File attached as well

 

let
    Source = Table.FromRows(Json.Document(Binary.Decompress(Binary.FromText("ZY7BDsIgEER/peHcA9BdpFfjF6iJB8KhiSQSbWnU+P2yKKtND+xsyLyZdU5s4zU8RCuO9yFOtDTfh2jyVEZK/vSt+/kqeLqEcKug6i1RnVWYRUuDDLLvMKcPuarWBmwWoAiNUPtl4RnjoNqpyN7bxZm7OIxpOpNtH1/h+d/XlHhKN4BlAnMrcz4ujYvabKcu3UGhtZYkamNReP8G", BinaryEncoding.Base64), Compression.Deflate)), let _t = ((type text) meta [Serialized.Text = true]) in type table [#"Item 1" = _t, #"Item 2" = _t, #"Item 3" = _t, #"Item 4" = _t, #"Value 1" = _t, #"Value 2" = _t, #"Value 3" = _t, #"Value 4" = _t]),
    step = Table.TransformColumnTypes(Source,{{"Item 1", type text}, {"Item 2", type text}, {"Item 3", type text}, {"Item 4", type text}, {"Value 1", Int64.Type}, {"Value 2", Int64.Type}, {"Value 3", Int64.Type}, {"Value 4", Int64.Type}}),
    G1 = Table.FromColumns({step[Item 1],step[Value 1]},{"Items","Value"}),
    G2 = Table.FromColumns({step[Item 2],step[Value 2]},{"Items","Value"}),
    G3 = Table.FromColumns({step[Item 3],step[Value 3]},{"Items","Value"}),
    G4 = Table.FromColumns({step[Item 4],step[Value 4]},{"Items","Value"}),
    Final=Table.Combine({G1,G2,G3,G4}),
    #"Filtered Rows" = Table.SelectRows(Final, each ([Items] <> " ") and ([Value] <> null))
in
    #"Filtered Rows"

Helpful resources

Announcements
PBIApril_Carousel

Power BI Monthly Update - April 2025

Check out the April 2025 Power BI update to learn about new features.

Notebook Gallery Carousel1

NEW! Community Notebooks Gallery

Explore and share Fabric Notebooks to boost Power BI insights in the new community notebooks gallery.

April2025 Carousel

Fabric Community Update - April 2025

Find out what's new and trending in the Fabric community.

Top Solution Authors