cancel
Showing results for
Did you mean:

Find everything you need to get certified on Fabric—skills challenges, live sessions, exam prep, role guidance, and more. Get started

Employee

## Measure help

I have a problem I am struggling to solve. I have a table with items sold in 4 different columns and the total sales of the item sold in that column in 4 different columns. (See Below).

I need to calculate the total sales of Each item (Bikes, Trains, etc.) regardless of the column its in.

For example,"Bikes" is reference in Item column 1, 2, & in column 3 twice, thus would need to sum the values in Value column 1 (Row 2, "556"), Value column 2(row 3, "3815"), and Value Column 3(row 4 "2546" & row 6 "644") to See "Bikes" = 7561.

This would need to be done for Each of the items sold.

 Item 1 Item 2 Item 3 Item 4 Value 1 Value 2 Value 3 Value 4 Bikes Trains 556 1600 Trains Bikes Wheels 1986 3815 2065 Wheels Spokes Bikes Trains 2648 46 2546 16000 Spokes Wheels 11 298 Diamonds Rivets Bikes 256 645 644 Rivets Bikes Traoms Wheels 6448 23445 2205 1785

Thank you for any help you can provide.

1 ACCEPTED SOLUTION
Community Champion

@demonfc

I think you will be better off transforming our table into 2 columns (items and Values) using Power Query

File attached as well

```let
Source = Table.FromRows(Json.Document(Binary.Decompress(Binary.FromText("ZY7BDsIgEER/peHcA9BdpFfjF6iJB8KhiSQSbWnU+P2yKKtND+xsyLyZdU5s4zU8RCuO9yFOtDTfh2jyVEZK/vSt+/kqeLqEcKug6i1RnVWYRUuDDLLvMKcPuarWBmwWoAiNUPtl4RnjoNqpyN7bxZm7OIxpOpNtH1/h+d/XlHhKN4BlAnMrcz4ujYvabKcu3UGhtZYkamNReP8G", BinaryEncoding.Base64), Compression.Deflate)), let _t = ((type text) meta [Serialized.Text = true]) in type table [#"Item 1" = _t, #"Item 2" = _t, #"Item 3" = _t, #"Item 4" = _t, #"Value 1" = _t, #"Value 2" = _t, #"Value 3" = _t, #"Value 4" = _t]),
step = Table.TransformColumnTypes(Source,{{"Item 1", type text}, {"Item 2", type text}, {"Item 3", type text}, {"Item 4", type text}, {"Value 1", Int64.Type}, {"Value 2", Int64.Type}, {"Value 3", Int64.Type}, {"Value 4", Int64.Type}}),
G1 = Table.FromColumns({step[Item 1],step[Value 1]},{"Items","Value"}),
G2 = Table.FromColumns({step[Item 2],step[Value 2]},{"Items","Value"}),
G3 = Table.FromColumns({step[Item 3],step[Value 3]},{"Items","Value"}),
G4 = Table.FromColumns({step[Item 4],step[Value 4]},{"Items","Value"}),
Final=Table.Combine({G1,G2,G3,G4}),
#"Filtered Rows" = Table.SelectRows(Final, each ([Items] <> " ") and ([Value] <> null))
in
#"Filtered Rows"```

Regards
Zubair

Please try my custom visuals
Community Champion

@demonfc

I think you will be better off transforming our table into 2 columns (items and Values) using Power Query

File attached as well

```let
Source = Table.FromRows(Json.Document(Binary.Decompress(Binary.FromText("ZY7BDsIgEER/peHcA9BdpFfjF6iJB8KhiSQSbWnU+P2yKKtND+xsyLyZdU5s4zU8RCuO9yFOtDTfh2jyVEZK/vSt+/kqeLqEcKug6i1RnVWYRUuDDLLvMKcPuarWBmwWoAiNUPtl4RnjoNqpyN7bxZm7OIxpOpNtH1/h+d/XlHhKN4BlAnMrcz4ujYvabKcu3UGhtZYkamNReP8G", BinaryEncoding.Base64), Compression.Deflate)), let _t = ((type text) meta [Serialized.Text = true]) in type table [#"Item 1" = _t, #"Item 2" = _t, #"Item 3" = _t, #"Item 4" = _t, #"Value 1" = _t, #"Value 2" = _t, #"Value 3" = _t, #"Value 4" = _t]),
step = Table.TransformColumnTypes(Source,{{"Item 1", type text}, {"Item 2", type text}, {"Item 3", type text}, {"Item 4", type text}, {"Value 1", Int64.Type}, {"Value 2", Int64.Type}, {"Value 3", Int64.Type}, {"Value 4", Int64.Type}}),
G1 = Table.FromColumns({step[Item 1],step[Value 1]},{"Items","Value"}),
G2 = Table.FromColumns({step[Item 2],step[Value 2]},{"Items","Value"}),
G3 = Table.FromColumns({step[Item 3],step[Value 3]},{"Items","Value"}),
G4 = Table.FromColumns({step[Item 4],step[Value 4]},{"Items","Value"}),
Final=Table.Combine({G1,G2,G3,G4}),
#"Filtered Rows" = Table.SelectRows(Final, each ([Items] <> " ") and ([Value] <> null))
in
#"Filtered Rows"```

Regards
Zubair

Please try my custom visuals

Announcements

#### Europe’s largest Microsoft Fabric Community Conference

Join the community in Stockholm for expert Microsoft Fabric learning including a very exciting keynote from Arun Ulag, Corporate Vice President, Azure Data.

#### Power BI Monthly Update - June 2024

Check out the June 2024 Power BI update to learn about new features.

#### Fabric Community Update - June 2024

Get the latest Fabric updates from Build 2024, key Skills Challenge voucher deadlines, top blogs, forum posts, and product ideas.

#### New forum boards available in Real-Time Intelligence.

Ask questions in Eventhouse and KQL, Eventstream, and Reflex.

Top Solution Authors
Top Kudoed Authors