- Subscribe to RSS Feed
- Mark Topic as New
- Mark Topic as Read
- Float this Topic for Current User
- Bookmark
- Subscribe
- Printer Friendly Page
- Mark as New
- Bookmark
- Subscribe
- Mute
- Subscribe to RSS Feed
- Permalink
- Report Inappropriate Content
Measure calculating variance between ID
Hi,
Here is my table.
IDProcessing CentreTeamCategorySub-CategoryDateNumber Oustanding ItemsDollar Value
2023402 | x | yy | a | 2023-04-15 | 80 | $ 1,100.00 | |
2023402 | x | yy | a | 2023-04-15 | 80 | $ 31,100.00 | |
2023402 | x | yy | a | 2023-04-15 | 1 | $ 800.00 | |
2023402 | x | yy | a | 2023-04-15 | |||
2023402 | x | yy | a | 2023-04-15 | 16 | $ 4,400.00 | |
2023402 | x | yy | a | 2023-04-15 | 5 | ||
2023402 | x | yy | b | High | 2023-04-15 | 3727 | |
2023402 | x | yy | b | Medium | 2023-04-15 | 416 | |
2023402 | x | yy | b | Low | 2023-04-15 | 382 | |
2023402 | x | yy | b | Nil | 2023-04-15 | 921 | |
2023402 | x | yy | b | Non-Payment | 2023-04-15 | 217 | $ 9,181,600.00 |
2023402 | x | yy | b | Converted | 2023-04-15 | 280 | |
2023402 | x | yy | b | Refunds | 2023-04-15 | ||
2023501 | x | yy | a | 2023-05-01 | 1 | $ 4,443.29 | |
2023501 | x | yy | a | 2023-05-01 | 21 | $ 5,683.29 | |
2023501 | x | yy | a | 2023-05-01 | 2 | $ 800.00 | |
2023501 | x | yy | a | 2023-05-01 | 7 | $ 800.00 | |
2023501 | x | yy | a | 2023-05-01 | 15 | $ 6,800.00 | |
2023501 | x | yy | a | 2023-05-01 | 5 | ||
2023501 | x | yy | b | High | 2023-05-01 | 1550 | |
2023501 | x | yy | b | Medium | 2023-05-01 | 500 | |
2023501 | x | yy | b | Low | 2023-05-01 | 120 | |
2023501 | x | yy | b | Nil | 2023-05-01 | 1230 | |
2023501 | x | yy | b | Non-Payment | 2023-05-01 | 100 | $ 915,200.00 |
2023501 | x | yy | b | Converted | 2023-05-01 | 270 | |
2023501 | x | yy | b | Refunds | 2023-05-01 | ||
2023502 | x | yy | a | 2023-05-15 | 500 | $ 43,400.00 | |
2023502 | x | yy | a | 2023-05-15 | 100 | $ 43,400.00 | |
2023502 | x | yy | a | 2023-05-15 | 4 | $ 2,600.00 | |
2023502 | x | yy | a | 2023-05-15 | 1 | $ 800.00 | |
2023502 | x | yy | a | 2023-05-15 | 15 | $ 7,500.00 | |
2023502 | x | yy | a | 2023-05-15 | 7 | ||
2023502 | x | yy | b | High | 2023-05-15 | 3000 | |
2023502 | x | yy | b | Medium | 2023-05-15 | 256 | |
2023502 | x | yy | b | Low | 2023-05-15 | 800 | |
2023502 | x | yy | b | Nil | 2023-05-15 | 1200 | |
2023502 | x | yy | b | Non-Payment | 2023-05-15 | 229 | $ 1,956,300.00 |
2023502 | x | yy | b | Converted | 2023-05-15 | 249 | |
2023502 | x | yy | b | Refunds | 2023-05-15 |
I am looking for help to build a measure that would calculate the variance of outstanding items between the latest period (either use date column or the ID column) and the period just before the latest. In this example, it would be the variance between period with ID 2023502 and 2023501.
Thank you.
Solved! Go to Solution.
- Mark as New
- Bookmark
- Subscribe
- Mute
- Subscribe to RSS Feed
- Permalink
- Report Inappropriate Content
@Whoule , try a measure like
Variance Items =
VAR _lastest = MAX('Table'[ID])
VAR _previous= CALCULATE(MAX('Table'[ID]), 'Table'[ID] < _lastest)
VAR _latest_out = CALCULATE(SUM('Table'[Number Oustanding Items]), 'Table'[ID] = _lastest)
VAR _previous_out = CALCULATE(SUM('Table'[Number Oustanding Items]), 'Table'[ID] = PreviousPeriodID)
RETURN
IF(ISBLANK(_latest_out) || ISBLANK(_previous_out), BLANK(),
_latest_out - _previous_out)
- Mark as New
- Bookmark
- Subscribe
- Mute
- Subscribe to RSS Feed
- Permalink
- Report Inappropriate Content
@Whoule , try a measure like
Variance Items =
VAR _lastest = MAX('Table'[ID])
VAR _previous= CALCULATE(MAX('Table'[ID]), 'Table'[ID] < _lastest)
VAR _latest_out = CALCULATE(SUM('Table'[Number Oustanding Items]), 'Table'[ID] = _lastest)
VAR _previous_out = CALCULATE(SUM('Table'[Number Oustanding Items]), 'Table'[ID] = PreviousPeriodID)
RETURN
IF(ISBLANK(_latest_out) || ISBLANK(_previous_out), BLANK(),
_latest_out - _previous_out)

Helpful resources
Subject | Author | Posted | |
---|---|---|---|
07-27-2024 05:00 PM | |||
09-26-2024 03:46 AM | |||
08-27-2024 06:22 AM | |||
07-01-2024 05:35 AM | |||
07-01-2024 05:45 AM |
User | Count |
---|---|
122 | |
104 | |
83 | |
52 | |
45 |