Check your eligibility for this 50% exam voucher offer and join us for free live learning sessions to get prepared for Exam DP-700.
Get StartedDon't miss out! 2025 Microsoft Fabric Community Conference, March 31 - April 2, Las Vegas, Nevada. Use code MSCUST for a $150 discount. Prices go up February 11th. Register now.
I have the following table
PROJECT_KEY | SPRINT_NAME | ISSUE_KEY | YEAR |
ABC | ABC Sprint 01 | ABC-390 | 2022 |
ABC | ABC Sprint 01 | ABC-392 | 2022 |
ABC | ABC Sprint 02 | ABC-436 | 2022 |
ABC | ABC Sprint 02 | ABC-437 | 2022 |
ABC | ABC Sprint 02 | ABC-438 | 2022 |
ABC | ABC Sprint 03 | ABC-463 | 2022 |
ABC | ABC Sprint 03 | ABC-477 | 2022 |
ABC | ABC Sprint 07 | ABC-857 | 2022 |
ABC | ABC Sprint 07 | ABC-858 | 2022 |
ABC | ABC Sprint 08 | ABC-931 | 2023 |
ABC | ABC Sprint 08 | ABC-932 | 2023 |
ABC | ABC Sprint 08 | ABC-934 | 2023 |
ABC | ABC Sprint 08 | ABC-935 | 2023 |
ABC | ABC Sprint 08 | ABC-937 | 2023 |
ABC | ABC Sprint 08 | ABC-913 | 2023 |
ABC | ABC Sprint 08 | ABC-915 | 2023 |
ABC | ABC Sprint 08 | ABC-895 | 2023 |
I want to get the TOTAL_INSPRINTBUGS_SPRINTWISE and include ISSUE_KEYS in single row seperated by comma speint wise.
Just like the below table
PROJECT_KEY | SPRINT_NAME | ISSUE_KEY | YEAR | TOTAL_INSPRINTBUGS_SPRINTWISE |
ABC | ABC Sprint 01 | ABC-390,ABC-392 | 2022 | 2 |
ABC | ABC Sprint 02 | ABC-436,ABC-437,ABC-438 | 2022 | 3 |
ABC | ABC Sprint 03 | ABC-463,ABC-477 | 2022 | 2 |
ABC | ABC Sprint 07 | ABC-857,ABC-858 | 2022 | 2 |
ABC | ABC Sprint 08 | ABC-931,ABC-932,ABC-934,ABC-935,ABC-937,ABC-913,ABC-915,ABC-895 | 2023 | 8 |
I am trying to do this since later i can generate Rolling average of Insprint bugs sprint wise and also Drill through to show the ISSUE_KEYS that were reported in particular sprint.
Please help how this can be done.
Solved! Go to Solution.
This can be done in Power Query much easier. Here's the M Code.
let
Source = Table.FromRows(Json.Document(Binary.Decompress(Binary.FromText("jc47CoAwEATQq4TUCsluvqV6BMuQA9iIiPdHJRG7ZJplBh7MpiSneZHDe8V6nNt+CaVLHzmqJ5EiknloQ2pDqtCwQ6FHYWhD/qBjEPrOtK8wWBh2fgwVRtYFchcSCg0KLQo9CDWjEJwO8Yf5Bg==", BinaryEncoding.Base64), Compression.Deflate)), let _t = ((type nullable text) meta [Serialized.Text = true]) in type table [PROJECT_KEY = _t, SPRINT_NAME = _t, ISSUE_KEY = _t, YEAR = _t]),
#"Changed Type" = Table.TransformColumnTypes(Source,{{"PROJECT_KEY", type text}, {"SPRINT_NAME", type text}, {"ISSUE_KEY", type text}, {"YEAR", type text}}),
#"Grouped Rows" = Table.Group(#"Changed Type", {"PROJECT_KEY", "SPRINT_NAME", "YEAR"}, {
{"ISSUE_KEY", each Text.Combine([ISSUE_KEY], ","), type text},
{"TOTAL_INSPRINTBUGS_SPRINTWISE", each Table.RowCount(_), Int64.Type}
})
in
#"Grouped Rows"
Results:
Proud to be a Super User!
Create a Calculated Table
SummarizedTable =
SUMMARIZE(
'Table',
'Table'[PROJECT_KEY],
'Table'[SPRINT_NAME],
'Table'[YEAR],
"ISSUE_KEYS", CONCATENATEX('Table', 'Table'[ISSUE_KEY], ","),
"TOTAL_INSPRINTBUGS_SPRINTWISE", COUNT('Table'[ISSUE_KEY])
)
Create measure:
Rolling_Average =
CALCULATE(
AVERAGE(SummarizedTable[TOTAL_INSPRINTBUGS_SPRINTWISE]),
DATESINPERIOD(SummarizedTable[SPRINT_NAME], MAX(SummarizedTable[SPRINT_NAME]), -3, MONTH)
)
💌 If this helped, a Kudos 👍 or Solution mark ✅ would be great! 🎉
Cheers,
Kedar
Connect on LinkedIn
Thank you very much
Thank you very much
Hi @JeevanMallya ,
You can achieve the desired result by following this steps:
1- Use the following DAX measure to create a concatenated string of ISSUE_KEY sprint-wise:
ISSUE_KEYS_SPRINTWISE =
CONCATENATEX(
FILTER(
'YourTable',
'YourTable'[SPRINT_NAME] = MAX('YourTable'[SPRINT_NAME]) &&
'YourTable'[PROJECT_KEY] = MAX('YourTable'[PROJECT_KEY])
),
'YourTable'[ISSUE_KEY],
","
)
2- Create a measure to count the total issues in each sprint:
TOTAL_INSPRINTBUGS_SPRINTWISE =
COUNTROWS(
FILTER(
'YourTable',
'YourTable'[SPRINT_NAME] = MAX('YourTable'[SPRINT_NAME]) &&
'YourTable'[PROJECT_KEY] = MAX('YourTable'[PROJECT_KEY])
)
)
3- Now you can create a table visualization with the following columns: PROJECT_KEY, SPRINT_NAME, ISSUE_KEYS_SPRINTWISE, YEAR, TOTAL_INSPRINTBUGS_SPRINTWISE.
Your final output should look like this:
This can be done in Power Query much easier. Here's the M Code.
let
Source = Table.FromRows(Json.Document(Binary.Decompress(Binary.FromText("jc47CoAwEATQq4TUCsluvqV6BMuQA9iIiPdHJRG7ZJplBh7MpiSneZHDe8V6nNt+CaVLHzmqJ5EiknloQ2pDqtCwQ6FHYWhD/qBjEPrOtK8wWBh2fgwVRtYFchcSCg0KLQo9CDWjEJwO8Yf5Bg==", BinaryEncoding.Base64), Compression.Deflate)), let _t = ((type nullable text) meta [Serialized.Text = true]) in type table [PROJECT_KEY = _t, SPRINT_NAME = _t, ISSUE_KEY = _t, YEAR = _t]),
#"Changed Type" = Table.TransformColumnTypes(Source,{{"PROJECT_KEY", type text}, {"SPRINT_NAME", type text}, {"ISSUE_KEY", type text}, {"YEAR", type text}}),
#"Grouped Rows" = Table.Group(#"Changed Type", {"PROJECT_KEY", "SPRINT_NAME", "YEAR"}, {
{"ISSUE_KEY", each Text.Combine([ISSUE_KEY], ","), type text},
{"TOTAL_INSPRINTBUGS_SPRINTWISE", each Table.RowCount(_), Int64.Type}
})
in
#"Grouped Rows"
Results:
Proud to be a Super User!
March 31 - April 2, 2025, in Las Vegas, Nevada. Use code MSCUST for a $150 discount! Prices go up Feb. 11th.
If you love stickers, then you will definitely want to check out our Community Sticker Challenge!
Check out the January 2025 Power BI update to learn about new features in Reporting, Modeling, and Data Connectivity.
User | Count |
---|---|
144 | |
75 | |
63 | |
51 | |
48 |
User | Count |
---|---|
204 | |
86 | |
64 | |
59 | |
56 |