Skip to main content
cancel
Showing results for 
Search instead for 
Did you mean: 

Get Fabric Certified for FREE during Fabric Data Days. Don't miss your chance! Learn more

Reply
Anonymous
Not applicable

Extrapolate average monthly Percentage to remaining months of the year

I'm new to power BI and I am finding it difficult to extrapolate average monthly percentage to remaining months of the year
I have a measure called '% Actual Complete'

% Actual Complete = DIVIDE(SUM(PD_Project[BCWP]), SUM(PD_Project[ProjCost_Current_Baseline_P50]))

 I have a datetable that linked to PD_Project[Date]. The Datetable contains Period_monthYear for example P1 Apr-23, P2 May-23 and so on.
My visual looks like below

tek01_0-1711127913302.png

What i want to achieve is to get the Average '% Actual Complete'  and extrapolate it to the end of FY which is P12 Mar-24
How can i achieve this?

10 REPLIES 10
Anonymous
Not applicable

Please does anyone knows how to resolve this

You can use the built in trend and forecast lines

lbendlin_0-1711381436930.png

or you can create your own least squares forecast line.

 

Anonymous
Not applicable

Thanks @lbendlin This is not what i was looking for. Becasue I will be adding Planned % measure to the chart and Forecast and trendline will disappear

Then roll your own.

 

lbendlin_0-1711382640628.png

 

Anonymous
Not applicable

Thanks @lbendlin 
You use Table 2 = GENERATESERIES(2,12) but my x-axis is Period MonthYear e.g P1 Apr-23, P2 May-23 and so on. This is coming from Date Table. So it can't be generated and won't work

You can modify it to fit your calendar table.

 

Please provide sample data that fully covers your issue.
Please show the expected outcome based on the sample data you provided.

Anonymous
Not applicable

I can't share the sample data but i have created table called Project

 

Reporting_PeriodPeriodProjCost_Current_Baseline_P50BCWSBCWP
01/04/2023P1£138.79£50.00£45.00
01/05/2023P2£275.40£100.00£70.00
01/06/2023P3£83.30£10.00£5.00
01/07/2023P4£57.60£10.00£12.00
01/08/2023P5£70.60£5.00£7.00
01/09/2023P6£69.55£22.90£8.31
01/10/2023P7£192.00£3.18£2.93
01/11/2023P8£138.79£13.32£7.20
01/12/2023P9£275.40£11.80£10.40

 

DateTable

DateYearMonthNoMonthMonthYearNoMonth YearFiscal YearFY QuarterFYFYIDPeriodFYPeriodIDStartofMonthPeriod RankRelative PeriodPeriod YearPeriodNoFY|PeriodFYear/FY QuarterPeriod_MonthYearIsCurrentDate
31/12/2023202312December202312Dec-20232023Q3FY 2023/2423-24P923-24|P901-Dec-2321-3P9 23/24923-24|P9FY 2023/24 Q3P9 Dec-231
30/11/2023202311November202311Nov-20232023Q3FY 2023/2423-24P823-24|P801-Nov-2320-4P8 23/24823-24|P8FY 2023/24 Q3P8 Nov-231
31/10/2023202310October202310Oct-20232023Q3FY 2023/2423-24P723-24|P701-Oct-2319-5P7 23/24723-24|P7FY 2023/24 Q3P7 Oct-231
30/09/202320239September202309Sep-20232023Q2FY 2023/2423-24P623-24|P601-Sep-2318-6P6 23/24623-24|P6FY 2023/24 Q2P6 Sep-231
31/08/202320238August202308Aug-20232023Q2FY 2023/2423-24P523-24|P501-Aug-2317-7P5 23/24523-24|P5FY 2023/24 Q2P5 Aug-231
31/07/202320237July202307Jul-20232023Q2FY 2023/2423-24P423-24|P401-Jul-2316-8P4 23/24423-24|P4FY 2023/24 Q2P4 Jul-231
30/06/202320236June202306Jun-20232023Q1FY 2023/2423-24P323-24|P301-Jun-2315-9P3 23/24323-24|P3FY 2023/24 Q1P3 Jun-231
31/05/202320235May202305May-20232023Q1FY 2023/2423-24P223-24|P201-May-2314-10P2 23/24223-24|P2FY 2023/24 Q1P2 May-231
30/04/202320234April202304Apr-20232023Q1FY 2023/2423-24P123-24|P101-Apr-2313-11P1 23/24123-24|P1FY 2023/24 Q1P1 Apr-231
28/04/202420244April202404Apr-20242024Q1FY 2024/2524-25P124-25|P101-Apr-24251P1 24/25124-25|P1FY 2024/25 Q1P1 Apr-240
31/03/202420243March202403Mar-20242023Q4FY 2023/2423-24P1223-24|P1201-Mar-24240P12 23/241223-24|P12FY 2023/24 Q4P12 Mar-240
29/02/202420242February202402Feb-20242023Q4FY 2023/2423-24P1123-24|P1101-Feb-2423-1P11 23/241123-24|P11FY 2023/24 Q4P11 Feb-241
31/01/202420241January202401Jan-20242023Q4FY 2023/2423-24P1023-24|P1001-Jan-2422-2P10 23/241023-24|P10FY 2023/24 Q4P10 Jan-241


Relationship is Project[Reporting_period] and DateTable[Date]

tek01_0-1711385889068.png

the measure is calculated as 

 

% Actual Complete = DIVIDE(SUM(Project[BCWP]), SUM(Project[ProjCost_Current_Baseline_P50]))

% Planned Complete = DIVIDE(SUM(Project[BCWS]), SUM(Project[ProjCost_Current_Baseline_P50]))

 

 

tek01_1-1711386047375.png

what i want to achieve for the extrapolating to the end of the period year is shown below

tek01_2-1711386174056.png

Hope this make sense. I struggle to share link but not working so i decided to use this method so that you can understand

 

If you want anything but a straight line then you need to employ actual forecasting models (like I showed earlier).

 

Your date dimension table is not wired correctly.  Needs to be 1:* single direction.

lbendlin
Super User
Super User

Extrapolate how?  Linearly? Bezier curve? with Seasonality?

Anonymous
Not applicable

Linear extrapolation to the of the year

Helpful resources

Announcements
Fabric Data Days Carousel

Fabric Data Days

Advance your Data & AI career with 50 days of live learning, contests, hands-on challenges, study groups & certifications and more!

October Power BI Update Carousel

Power BI Monthly Update - October 2025

Check out the October 2025 Power BI update to learn about new features.

FabCon Atlanta 2026 carousel

FabCon Atlanta 2026

Join us at FabCon Atlanta, March 16-20, for the ultimate Fabric, Power BI, AI and SQL community-led event. Save $200 with code FABCOMM.

Top Solution Authors