Power BI is turning 10, and we’re marking the occasion with a special community challenge. Use your creativity to tell a story, uncover trends, or highlight something unexpected.
Get startedJoin us for an expert-led overview of the tools and concepts you'll need to become a Certified Power BI Data Analyst and pass exam PL-300. Register now.
Hello.
What is the best way to filter out erroneous data points?
Example data showing a single product's (filtered by a slicer) value over time:
It should look like this (with the erroroneous £185 data point removed):
I can make a calculated column that outputs a high/low/normal flag, but it calculates over the unfiltered table of every product/value.
I don't think I can filter by measures so I don't think I could do something similar with that.
I can't just filter all data that goes above £100 for all products as the (correct) values of different product varies more widely than that.
I can filter the data manually but this isn't as easy for end users.
Here is an example table:
Product Value A £9.30 A £9.91 A £9.12
A £185.85 B £31.25 B £31.29
B £0.031 B £31.32
C £0.52
C £0.51
C £0.53
C £0.50
Is there a way to make a calculated column that removes outliers for each product separately, within this table? (or better ways of doing a similar task)
Many thanks.
I adapted the solution described in the link below (kudos to the author!).
https://bielite.com/blog/scale-down-outliers-power-bi/
1. Create calculated column:
Outlier =
VAR vMean =
AVERAGE ( Table1[Value] )
VAR vStdDev =
STDEV.P ( Table1[Value] )
VAR vResult =
IF ( Table1[Value] > ( vMean + vStdDev ), 1, 0 )
RETURN
vResult
2. Create measure:
Sum of Value (no Outliers) =
CALCULATE ( SUM ( Table1[Value] ), Table1[Outlier] = 0 )
Proud to be a Super User!
This is your chance to engage directly with the engineering team behind Fabric and Power BI. Share your experiences and shape the future.
Check out the June 2025 Power BI update to learn about new features.
User | Count |
---|---|
72 | |
70 | |
55 | |
38 | |
31 |
User | Count |
---|---|
71 | |
64 | |
64 | |
49 | |
45 |