Skip to main content
cancel
Showing results for 
Search instead for 
Did you mean: 

Score big with last-minute savings on the final tickets to FabCon Vienna. Secure your discount

Reply
nymoslike
Regular Visitor

Decomposition Tree Showing (Blank) Values Despite Data Filtering

Hello everyone,

 

I'm currently facing an issue with the Decomposition Tree visual in Power BI, where I'm seeing "Blank" values in various levels of the hierarchy, despite applying several data cleaning and transformation steps.

 

Scenario: I've created a Decomposition Tree using sales data with the following structure:

  • Levels: Region, Product Category, Product, Sales Representative.

  • Measure: Sales Amount to analyze the data.

I split the data into multiple levels (Level 1, Level 2, Level 3, Level 4) based on the product and sales structure, and ensured that I filtered out all null and empty values using Power Query transformations.

 

Despite this, the Decomposition Tree is still displaying "(Blank)" values at several levels, which makes the visualization less useful and cluttered. I've made sure to remove nulls and even added conditional columns to replace blanks with default values like "Unknown", but the blanks persist.

(Blank) Values.png

 

 

 

What I've Tried: I have also looked into several existing solutions and tried implementing them, but unfortunately, they have not worked for my case. Here are some of the references I've used:

Attached Example Data: I've attached some sample data to reproduce the issue. Some Sales Rep and other values are missing to simulate blank fields, yet these blanks still appear in the visualization even when I explicitly filtered them out in Power Query.

 

My Goal: I want to ensure that the Decomposition Tree only displays levels and branches where valid values exist, and completely hides any branches that would otherwise show "(Blank)".

 

Has anyone faced similar issues or have suggestions on how to prevent blanks from appearing in the Decomposition Tree? Any guidance would be greatly appreciated.

 

Thank you in advance!

 

Attachments:

  • Example CSV data with blank fields for reproduction:
    Order ID;Customer Name;Product;Category;Sales Amount;Order Date;Region;Sales Rep
    101;John Doe;Laptop;Electronics;1200;15.01.2023;East;Alice Smith
    102;Jane Smith;Office Chair;Furniture;300;10.02.2023;West;Bob Brown
    103;Alan Brown;Smartphone;Electronics;800;25.01.2023;North;Carol White
    104;Emily Davis;Standing Desk;Furniture;450;05.03.2023;South;Alice Smith
    105;Michael Scott;Printer;Office;150;20.01.2023;East;Bob Brown
    106;Sarah Connor;Monitor;Electronics;250;18.02.2023;West;Carol White
    107;David Smith;Coffee Machine;Kitchen;100;15.03.2023;East;Alice Smith
    108;Laura Lee;Tablet;Electronics;600;08.03.2023;North;
    109;George Miller;Bookcase;Furniture;200;29.01.2023;South;Carol White
    110;Rachel Green;Whiteboard;Office;75;12.02.2023;East;Alice Smith
    111;Anna Bell;Keyboard;Electronics;100;22.03.2023;West;
    112;Chris Rock;Mouse;Electronics;50;05.02.2023;North;
    113;Patricia Ray;Desk;Furniture;400;18.01.2023;East;
    114;Robert Paul;Headphones;Electronics;150;24.02.2023;West;
    115;Kate Winslet;Lamp;Furniture;80;02.03.2023;South;Carol White
    116;Peter Pan;Router;Electronics;120;31.01.2023;North;Alice Smith
    117;Luke Skywalker;Notebook;Office;25;13.03.2023;East;Bob Brown
    118;Leia Organa;Webcam;Electronics;70;09.02.2023;West;
    119;Clark Kent;Chair;Furniture;150;22.01.2023;North;Alice Smith
    120;Bruce Wayne;Monitor Stand;Office;40;19.03.2023;East;Bob Brown
    121;Diana Prince;Graphics Tablet;Electronics;200;25.02.2023;South;Carol White
    122;Steve Rogers;Speaker;Electronics;180;11.01.2023;West;Alice Smith
    123;Tony Stark;Desk Lamp;Furniture;60;04.03.2023;East;Bob Brown
    124;Natasha Romanoff;Wireless Charger;Electronics;30;28.01.2023;North;Carol White
    125;Bruce Banner;Coffee Table;Furniture;250;16.02.2023;South;Alice Smith
    126;Thor Odinson;Paper Shredder;Office;110;10.03.2023;West;Bob Brown
    127;Loki Laufeyson;Standing Lamp;Furniture;90;17.01.2023;North;
    128;Sam Wilson;Laptop Stand;Office;45;26.02.2023;East;Alice Smith
    129;Bucky Barnes;Projector;Electronics;500;29.01.2023;South;
    130;Wanda Maximoff;Office Drawer;Furniture;220;11.03.2023;West;Carol White
    131;Vision;Surge Protector;Electronics;35;15.02.2023;North;Alice Smith
    132;Stephen Strange;Whiteboard Marker;Office;15;13.01.2023;East;Bob Brown
    133;Scott Lang;Chair Mat;Furniture;70;07.03.2023;West;Carol White
    134;Hope Pym;USB Hub;Electronics;25;28.02.2023;South;Alice Smith
    135;T'Challa;Wireless Mouse;Electronics;50;23.01.2023;North;
    136;Shuri;Pen Holder;Office;10;18.03.2023;East;Carol White
    137;Okoye;Stapler;Office;15;06.02.2023;West;Alice Smith
    138;M'Baku;;Electronics;300;27.01.2023;South;
    139;Nakia;;Electronics;20;14.03.2023;North;
    140;Peter Parker;Notebook Stand;Office;35;17.02.2023;East;Alice Smith
    141;Miles Morales;Desk Organizer;Furniture;50;12.01.2023;West;Bob Brown
    142;Gwen Stacy;Wall Clock;Furniture;45;21.03.2023;South;Carol White
    143;Eddie Brock;;Electronics;85;19.02.2023;North;Alice Smith
    144;Cletus Kasady;Desk Pad;Office;30;14.01.2023;East;Bob Brown
    145;Norman Osborn;;Electronics;25;12.03.2023;West;Carol White
    146;Harry Osborn;File Cabinet;Furniture;300;03.02.2023;South;Alice Smith
    147;Otto Octavius;Printer Paper;Office;20;26.01.2023;North;Bob Brown
    148;Flint Marko;Trash Can;Furniture;35;09.03.2023;East;Carol White
    149;Quentin Beck;;Electronics;40;20.02.2023;West;
    150;Adrian Toomes;Cork Board;Office;25;21.01.2023;North;Bob Brown

2 REPLIES 2
Bibiano_Geraldo
Super User
Super User

Hi, You have two ways: Replace null values or take off null values:

 

1- Replace null values (i recomend): In Power Query, in your Product column replace empty values with any String you want:

 

1.

Bibiano_Geraldo_0-1729680683884.png

 

2. Replace null with any string you want:

Bibiano_Geraldo_1-1729680982766.png


Closse and apply, now you decomposition should look like this:

Bibiano_Geraldo_2-1729681741220.png

 

Note: Do the same for other columns.

2- Take Off Null values:

Bibiano_Geraldo_3-1729682020173.png

 

Bibiano_Geraldo_4-1729682085916.png

Now your decomposition should look like this, but note, taking off null values affect your sales amount value:

Bibiano_Geraldo_5-1729682192567.png

 

 

Hello Bibiano_Geraldo,

Thank you for your detailed response and the step-by-step images — I really appreciate it!

Unfortunately, applying your methods to my dataset causes me to lose crucial data. My goal is to create a hierarchical visualization that includes all data, with null or empty fields representing "leaf nodes" that should not be filtered out.

The issue is that the Decomposition Tree seems to treat these nulls as values to eliminate or replace, but they are a valid part of my hierarchy, marking the end of a branch. I’ve read that the Decomposition Tree is more suited for metric analysis, which may explain the challenge.

Do you have any other suggestions for representing this kind of hierarchy? I’ve also found that most native Power BI visuals or marketplace alternatives either don't work well for my needs or require paid options.

Thanks again for your help — any further ideas would be greatly appreciated!

Helpful resources

Announcements
August Power BI Update Carousel

Power BI Monthly Update - August 2025

Check out the August 2025 Power BI update to learn about new features.

August 2025 community update carousel

Fabric Community Update - August 2025

Find out what's new and trending in the Fabric community.