Microsoft Fabric Community Conference 2025, March 31 - April 2, Las Vegas, Nevada. Use code FABINSIDER for a $400 discount.
Register nowThe Power BI DataViz World Championships are on! With four chances to enter, you could win a spot in the LIVE Grand Finale in Las Vegas. Show off your skills.
i am in a very peculiar requirement of calculating cp cpk in powerbi using the formula for sigma estimator as "sbar/c4" check reference link here
My sample data is as given below
06-10-2019 | Dummy | Gaon | 37 | Cap191002 | 1 | 10 | READING7 | 18.31 | 18.2 | 18.8 |
09-10-2019 | Dummy | Gaon | 37 | Cap191002 | 1 | 10 | READING7 | 18.428 | 18.2 | 18.8 |
16-10-2019 | Dummy | Gaon | 37 | Cap191002 | 1 | 10 | READING7 | 18.364 | 18.2 | 18.8 |
19-10-2019 | Dummy | Gaon | 37 | Cap191002 | 1 | 10 | READING7 | 18.48 | 18.2 | 18.8 |
22-10-2019 | Dummy | Gaon | 37 | Cap191002 | 1 | 10 | READING7 | 18.49 | 18.2 | 18.8 |
28-10-2019 | Dummy | Gaon | 37 | Cap191002 | 1 | 10 | READING7 | 18.407 | 18.2 | 18.8 |
01-11-2019 | Dummy | Gaon | 37 | Cap191002 | 1 | 10 | READING7 | 18.512 | 18.2 | 18.8 |
17-11-2019 | Dummy | Gaon | 37 | Cap191002 | 1 | 10 | READING7 | 18.506 | 18.2 | 18.8 |
19-11-2019 | Dummy | Gaon | 37 | Cap191002 | 1 | 10 | READING7 | 18.472 | 18.2 | 18.8 |
21-11-2019 | Dummy | Gaon | 37 | Cap191002 | 1 | 10 | READING7 | 18.507 | 18.2 | 18.8 |
22-11-2019 | Dummy | Gaon | 37 | Cap191002 | 1 | 10 | READING7 | 18.596 | 18.2 | 18.8 |
19-12-2019 | Dummy | Gaon | 37 | Cap191002 | 1 | 10 | READING7 | 18.517 | 18.2 | 18.8 |
21-12-2019 | Dummy | Gaon | 37 | Cap191002 | 1 | 10 | READING7 | 18.529 | 18.2 | 18.8 |
22-12-2019 | Dummy | Gaon | 37 | Cap191002 | 1 | 10 | READING7 | 18.481 | 18.2 | 18.8 |
23-12-2019 | Dummy | Gaon | 37 | Cap191002 | 1 | 10 | READING7 | 18.634 | 18.2 | 18.8 |
01-01-2020 | Dummy | Gaon | 37 | Cap191002 | 1 | 10 | READING7 | 18.451 | 18.2 | 18.8 |
02-01-2020 | Dummy | Gaon | 37 | Cap191002 | 1 | 10 | READING7 | 18.375 | 18.2 | 18.8 |
03-01-2020 | Dummy | Gaon | 37 | Cap191002 | 1 | 10 | READING7 | 18.403 | 18.2 | 18.8 |
06-01-2020 | Dummy | Gaon | 37 | Cap191002 | 1 | 10 | READING7 | 18.404 | 18.2 | 18.8 |
07-01-2020 | Dummy | Gaon | 37 | Cap191002 | 1 | 10 | READING7 | 18.54 | 18.2 | 18.8 |
10-01-2020 | Dummy | Gaon | 37 | Cap191002 | 1 | 10 | READING7 | 18.614 | 18.2 | 18.8 |
12-01-2020 | Dummy | Gaon | 37 | Cap191002 | 1 | 10 | READING7 | 18.668 | 18.2 | 18.8 |
13-01-2020 | Dummy | Gaon | 37 | Cap191002 | 1 | 10 | READING7 | 18.548 | 18.2 | 18.8 |
16-01-2020 | Dummy | Gaon | 37 | Cap191002 | 1 | 10 | READING7 | 18.497 | 18.2 | 18.8 |
25-01-2020 | Dummy | Gaon | 37 | Cap191002 | 1 | 10 | READING7 | 18.577 | 18.2 | 18.8 |
26-01-2020 | Dummy | Gaon | 37 | Cap191002 | 1 | 10 | READING7 | 18.517 | 18.2 | 18.8 |
28-01-2020 | Dummy | Gaon | 37 | Cap191002 | 1 | 10 | READING7 | 18.481 | 18.2 | 18.8 |
09-03-2020 | Dummy | Gaon | 37 | Cap200303 | 1 | 10 | READING7 | 18.499 | 18.2 | 18.8 |
15-03-2020 | Dummy | Gaon | 37 | Cap200303 | 1 | 10 | READING7 | 18.429 | 18.2 | 18.8 |
17-03-2020 | Dummy | Gaon | 37 | Cap200303 | 1 | 10 | READING7 | 18.347 | 18.2 | 18.8 |
17-03-2020 | Dummy | Gaon | 37 | Cap200303 | 1 | 10 | READING7 | 18.59 | 18.2 | 18.8 |
19-03-2020 | Dummy | Gaon | 37 | Cap200303 | 1 | 10 | READING7 | 18.433 | 18.2 | 18.8 |
22-03-2020 | Dummy | Gaon | 37 | Cap200303 | 1 | 10 | READING7 | 18.478 | 18.2 | 18.8 |
26-03-2020 | Dummy | Gaon | 37 | Cap200303 | 1 | 10 | READING7 | 18.569 | 18.2 | 18.8 |
29-03-2020 | Dummy | Gaon | 37 | Cap200303 | 1 | 10 | READING7 | 18.701 | 18.2 | 18.8 |
29-03-2020 | Dummy | Gaon | 37 | Cap200303 | 1 | 10 | READING7 | 18.496 | 18.2 | 18.8 |
30-03-2020 | Dummy | Gaon | 37 | Cap200303 | 1 | 10 | READING7 | 18.548 | 18.2 | 18.8 |
31-03-2020 | Dummy | Gaon | 37 | Cap200303 | 1 | 10 | READING7 | 18.604 | 18.2 | 18.8 |
01-04-2020 | Dummy | Gaon | 37 | Cap200303 | 1 | 10 | READING7 | 18.558 | 18.2 | 18.8 |
02-04-2020 | Dummy | Gaon | 37 | Cap200303 | 1 | 10 | READING7 | 18.63 | 18.2 | 18.8 |
here we need to calculate cp cpk for the city label column as a subgroup,... this is a sample but in reality, there would be 1000s of city labels, 10 different country names, 40 state names. PO box no, Readings and Box size is to be ignored
C4 value is decided to be 0.9727 as subgroups are considered to be 10
I want to know how do I create a DAX query to calculate the new sigma value
my current query is like this
Cpk = VAR sigma = STDEV.S(Table[Value]) VAR estimatedMean = AVERAGE(Table[Value]) VAR Cplower = (estimatedMean-MIN(Table[LSL Value]))/(3*sigma) VAR Cpupper = (MAX(Table[USL Value])-estimatedMean)/(3*sigma) RETURN MIN(Cplower,Cpupper)
the new query can dynamically change as per slicers selected in Powerbi eg country, state type, state name, etc
Please help me out, the condition is very critical
Hi @Anonymous,
The column headers you provide cant match the data below,pls check wheher the headers should be as below:
What is your expected output?If possible,could you pls upload your sample .pbix file?
Best Regards,
Kelly
Did I answer your question? Mark my post as a solution!
March 31 - April 2, 2025, in Las Vegas, Nevada. Use code MSCUST for a $150 discount!
Check out the February 2025 Power BI update to learn about new features.
User | Count |
---|---|
85 | |
79 | |
53 | |
39 | |
36 |
User | Count |
---|---|
100 | |
85 | |
47 | |
46 | |
44 |