Skip to main content
cancel
Showing results for 
Search instead for 
Did you mean: 

The Power BI Data Visualization World Championships is back! Get ahead of the game and start preparing now! Learn more

Reply
PowerBIET
Frequent Visitor

Convert Oracle SQL Query to DAX

Expect Output - first_shoppers = 3083

Expect Output - avg_spend_first_d = 134.53

Adding Sample Data:

report_datechannelmembership_numdemand_revenue
3/1/2023OPIC6923297473.89
12/1/2022OPIC692329795.57
3/1/2023OPIC4732483220.59
3/1/2023OPIC796879954.09
3/1/2023OPIC770789199.94
3/1/2023OPIC295379767.22
3/1/2023OPIC2119246173.53
3/1/2023OPIC2159933159.96
3/1/2023OPIC2276172260.8
3/1/2023OPIC554957599.13
3/1/2023OPIC210926476.79
3/1/2023OPIC9386426126.91
3/1/2023OPIC679898082.36
3/1/2023OPIC4165529151.66
3/1/2023OPIC9276831298.21
3/1/2023OPIC4771072106.87
11/1/2022OPIC4771072304.89
3/1/2023OPIC3956433153.84
3/1/2023OPIC1650323100.91
3/1/2023OPIC997608576.52
3/1/2023OPIC1061082115.94

 

Full Data

https://docs.google.com/spreadsheets/d/1iiuPFVPFpS7ojtMRlEaRxQPKpR8I-8g8/edit?usp=sharing&ouid=11351... 

 

We have to convert this ORACLE SQL(below) query from a legacy system into dax.  Each report_date is dynamnic in the legacy system.   

 

This query gets first time shoppers that only placed one order is a specified range, and who have not placed any order 6 month prior starting from start day, hence the MINUS 180 part. 

How can I rewrite the query in DAX the includes the MINUS section of -180 that excludes shoppers who placed an order in Power BI?

 

Here is the query:

SELECT
    NVL(SUM(mem_count),0) AS first_shoppers,
    CASE WHEN SUM(revenue_d) > 0 AND SUM(mem_count) > 0 THEN SUM(revenue_d)/SUM(mem_count) ELSE 0 END avg_spend_first_d
        FROM
        ( SELECT
            COUNT( DISTINCT mbr.membership_num) AS mem_count    ,
            SUM(demand_revenue)                     AS revenue_d
                FROM product pd,
                ( SELECT membership_num FROM
                        ( SELECT membership_num, COUNT(DISTINCT order_num) AS order_count
                            FROM product
                                WHERE report_date BETWEEN '2023-03-01' AND '2023-03-02'--dynamic
                                AND channel = 'OPIC'
                                AND membership_num IS NOT NULL
                            GROUP BY membership_num
                            HAVING COUNT(DISTINCT order_num) = 1
                        )
                        MINUS
                        SELECT DISTINCT membership_num
                            FROM product
                                WHERE report_date < '2023-03-01' AND report_date >= '2023-03-02'-180 --dynamic
                                AND channel = 'OPIC'
                                AND membership_num IS NOT NULL
                ) mbr
                WHERE pd.membership_num = mbr.membership_num
                AND pd.channel = 'OPIC'
                AND report_date BETWEEN '2023-03-01' AND '2023-03-02' --dynamic
        );
1 ACCEPTED SOLUTION
Greg_Deckler
Community Champion
Community Champion

@PowerBIET Should be something along these lines. See PBIX attached below signature. Hard to test because you only have a months worth of data.

First Shoppers = 
    VAR __DaysAgo = 180
    VAR __MinRange = MIN('Table'[report_date])
    VAR __TableRange1 = SUMMARIZE('Table',[membership_num],"__Count",COUNTROWS('Table'))
    VAR __TableRange2 = FILTER(__TableRange1, [__Count] = 1)
    VAR __PastRange = FILTER(ALL('Table'),[report_date] < __MinRange && [report_date] >= __MinRange - 180)
    VAR __FirstShoppers = DISTINCT(SELECTCOLUMNS(__TableRange2,"__MemberNum",[membership_num]))
    VAR __PastShoppers = DISTINCT(SELECTCOLUMNS(__PastRange,"__MemeberNum",[membership_num]))
    VAR __MembersOfInterest = 
        EXCEPT(
            __FirstShoppers,
            __PastShoppers
        )
    VAR __Result = COUNTROWS(__MembersOfInterest)
RETURN
   __Result

 

Average Spend = 
    VAR __DaysAgo = 180
    VAR __MinRange = MIN('Table'[report_date])
    VAR __TableRange1 = SUMMARIZE('Table',[membership_num],"__Count",COUNTROWS('Table'))
    VAR __TableRange2 = FILTER(__TableRange1, [__Count] = 1)
    VAR __PastRange = FILTER(ALL('Table'),[report_date] < __MinRange && [report_date] >= __MinRange - 180)
    VAR __FirstShoppers = DISTINCT(SELECTCOLUMNS(__TableRange2,"__MemberNum",[membership_num]))
    VAR __PastShoppers = DISTINCT(SELECTCOLUMNS(__PastRange,"__MemeberNum",[membership_num]))
    VAR __MembersOfInterest = 
        EXCEPT(
            __FirstShoppers,
            __PastShoppers
        )
    VAR __Result = AVERAGEX(FILTER('Table', [membership_num] IN __MembersOfInterest),[demand_revenue])
RETURN
    __Result


Follow on LinkedIn
@ me in replies or I'll lose your thread!!!
Instead of a Kudo, please vote for this idea
Become an expert!: Enterprise DNA
External Tools: MSHGQM
YouTube Channel!: Microsoft Hates Greg
Latest book!:
DAX For Humans

DAX is easy, CALCULATE makes DAX hard...

View solution in original post

2 REPLIES 2
Greg_Deckler
Community Champion
Community Champion

@PowerBIET Should be something along these lines. See PBIX attached below signature. Hard to test because you only have a months worth of data.

First Shoppers = 
    VAR __DaysAgo = 180
    VAR __MinRange = MIN('Table'[report_date])
    VAR __TableRange1 = SUMMARIZE('Table',[membership_num],"__Count",COUNTROWS('Table'))
    VAR __TableRange2 = FILTER(__TableRange1, [__Count] = 1)
    VAR __PastRange = FILTER(ALL('Table'),[report_date] < __MinRange && [report_date] >= __MinRange - 180)
    VAR __FirstShoppers = DISTINCT(SELECTCOLUMNS(__TableRange2,"__MemberNum",[membership_num]))
    VAR __PastShoppers = DISTINCT(SELECTCOLUMNS(__PastRange,"__MemeberNum",[membership_num]))
    VAR __MembersOfInterest = 
        EXCEPT(
            __FirstShoppers,
            __PastShoppers
        )
    VAR __Result = COUNTROWS(__MembersOfInterest)
RETURN
   __Result

 

Average Spend = 
    VAR __DaysAgo = 180
    VAR __MinRange = MIN('Table'[report_date])
    VAR __TableRange1 = SUMMARIZE('Table',[membership_num],"__Count",COUNTROWS('Table'))
    VAR __TableRange2 = FILTER(__TableRange1, [__Count] = 1)
    VAR __PastRange = FILTER(ALL('Table'),[report_date] < __MinRange && [report_date] >= __MinRange - 180)
    VAR __FirstShoppers = DISTINCT(SELECTCOLUMNS(__TableRange2,"__MemberNum",[membership_num]))
    VAR __PastShoppers = DISTINCT(SELECTCOLUMNS(__PastRange,"__MemeberNum",[membership_num]))
    VAR __MembersOfInterest = 
        EXCEPT(
            __FirstShoppers,
            __PastShoppers
        )
    VAR __Result = AVERAGEX(FILTER('Table', [membership_num] IN __MembersOfInterest),[demand_revenue])
RETURN
    __Result


Follow on LinkedIn
@ me in replies or I'll lose your thread!!!
Instead of a Kudo, please vote for this idea
Become an expert!: Enterprise DNA
External Tools: MSHGQM
YouTube Channel!: Microsoft Hates Greg
Latest book!:
DAX For Humans

DAX is easy, CALCULATE makes DAX hard...

Thanks, this below ended up being my final code, after adding a relative date slicer.
Shoppers =
 
    VAR __MinRange = CALCULATE( MIN(Cal[Date]) )
    VAR __MaxRange = CALCULATE( max(Cal[Date]) )

 

    VAR __TableRange1 =  SUMMARIZE('Table',[membership_num],"__Count", DISTINCTCOUNT('Table'[order_num]) )

 

    var a  =  CALCULATETABLE( VALUES('Table'[membership_num]), FILTER(__TableRange1,[__Count]=1) )
   
    var b = CALCULATETABLE( VALUES('Table'[membership_num]),
                           FILTER(ALL('Cal'),[Date] >= __MaxRange - 180 && [Date] < __MinRange ) )
   
    VAR __MembersOfInterest =
        EXCEPT(
            a,
            b
        )
    VAR __Result = COUNTROWS(__MembersOfInterest)
   

 

RETURN
   __Result

Helpful resources

Announcements
Power BI DataViz World Championships

Power BI Dataviz World Championships

The Power BI Data Visualization World Championships is back! Get ahead of the game and start preparing now!

December 2025 Power BI Update Carousel

Power BI Monthly Update - December 2025

Check out the December 2025 Power BI Holiday Recap!

FabCon Atlanta 2026 carousel

FabCon Atlanta 2026

Join us at FabCon Atlanta, March 16-20, for the ultimate Fabric, Power BI, AI and SQL community-led event. Save $200 with code FABCOMM.