Join us at FabCon Atlanta from March 16 - 20, 2026, for the ultimate Fabric, Power BI, AI and SQL community-led event. Save $200 with code FABCOMM.
Register now!Calling all Data Engineers! Fabric Data Engineer (Exam DP-700) live sessions are back! Starting October 16th. Sign up.
I have a matrix visual showing data of 4 months. Computers name in row field, dates of 4 months in Column field and CPU average of every computer in Value field. I want to change background colour of highest value for every month and for every comupter name i.e; each row should have 4 values should get highligted and same could be applicable for all rows in the matrix. Kindly Help me with the resolution
Here i'm attaching the whole data set for better understanding
Row Labels | 01-Feb | 02-Feb | 03-Feb | 04-Feb | 05-Feb | 06-Feb | 07-Feb | 08-Feb | 09-Feb | 10-Feb | 11-Feb | 12-Feb | 13-Feb | 14-Feb | 15-Feb | 16-Feb | 17-Feb | 18-Feb | 19-Feb | 20-Feb | 21-Feb | 22-Feb | 23-Feb | 24-Feb | 25-Feb | 26-Feb | 27-Feb | 28-Feb | 29-Feb | 01-Mar | 02-Mar | 03-Mar | 04-Mar | 05-Mar | 06-Mar | 07-Mar | 08-Mar | 09-Mar | 10-Mar | 11-Mar | 12-Mar | 13-Mar | 14-Mar | 15-Mar | 16-Mar | 17-Mar | 18-Mar | 19-Mar | 20-Mar | 21-Mar | 22-Mar | 23-Mar | 24-Mar | 25-Mar | 26-Mar | 27-Mar | 28-Mar | 29-Mar | 30-Mar | 31-Mar | 01-Apr | 02-Apr | 03-Apr | 04-Apr | 05-Apr | 06-Apr | 07-Apr | 08-Apr | 09-Apr | 10-Apr | 11-Apr | 12-Apr | 13-Apr | 14-Apr | 15-Apr | 16-Apr | 17-Apr | 18-Apr | 19-Apr | 20-Apr | 21-Apr | 22-Apr | 23-Apr | 24-Apr | 25-Apr | 26-Apr | 27-Apr | 28-Apr | 29-Apr | 30-Apr | 01-May | 02-May | 03-May | 04-May | 05-May | 06-May | 07-May | 08-May | 09-May | 10-May | 11-May | 12-May | 13-May | 14-May | 15-May | 16-May | 17-May | 18-May | 19-May | 20-May | 21-May | 22-May | 23-May | 24-May | 25-May | 26-May | 27-May | 28-May | 29-May | 30-May | 31-May |
ABC | 3.245776 | 2.93106 | 2.948109 | 2.906601 | 2.994802 | 3.08809 | 3.052478 | 3.033193 | 3.020442 | 2.960306 | 3.022792 | 2.995876 | 3.046906 | 3.120445 | 3.057552 | 2.995227 | 3.022975 | 2.985178 | 3.041812 | 3.100819 | 3.2454 | 3.22864 | 3.453313 | 3.395911 | 3.414993 | 3.233346 | 3.326281 | 3.230541 | 3.209912 | 3.06939 | 3.086276 | 3.214992 | 3.332429 | 3.531987 | 4.38017 | 4.454582 | 4.203712 | 4.227627 | 4.171633 | 4.164295 | 4.33894 | 4.191572 | 4.200447 | 4.127775 | 4.178199 | 4.222138 | 4.33298 | 4.512986 | 4.283242 | 3.061361 | 3.113764 | 3.065813 | 3.06866 | 3.736458 | 3.01604 | 2.819998 | 2.629012 | 2.573457 | 2.61235 | 2.746112 | 2.847828 | 2.949404 | 2.991171 | 3.043321 | 3.02626 | 3.153112 | 3.122201 | 3.259399 | 3.160183 | 3.187581 | 3.598452 | 3.246137 | 3.266416 | 3.336474 | 3.304811 | 3.230829 | 4.04198 | 3.824973 | 3.190845 | 3.050627 | 2.926364 | 2.977929 | 3.007047 | 3.018291 | 2.956035 | 2.876966 | 2.907845 | 2.850654 | 2.936649 | 2.931553 | 2.91897 | 2.936427 | 3.021741 | 3.010562 | 2.849408 | 2.820951 | 2.740197 | 2.801853 | 2.870882 | 2.904315 | 2.923612 | 2.856269 | 2.829312 | 2.733721 | 2.736908 | 2.949609 | 3.251045 | 2.902697 | 3.03528 | 2.981083 | 2.942972 | 2.888551 | 2.850221 | 2.984866 | 3.004355 | 2.881654 | 2.926332 | 2.984451 | 3.002878 | 4.019996 | 4.093973 |
DEF | 7.019671 | 6.954742 | 6.874146 | 6.944771 | 6.945359 | 6.986665 | 6.964015 | 6.83828 | 6.852804 | 6.97712 | 6.955708 | 6.92042 | 6.981649 | 7.10423 | 7.092111 | 7.090595 | 7.747339 | 7.391184 | 6.655784 | 6.641957 | 6.793372 | 6.606365 | 6.744089 | 6.83737 | 6.859716 | 6.842978 | 6.787913 | 6.782014 | 6.930302 | 6.641757 | 6.718469 | 6.947947 | 6.846355 | 6.972591 | 6.909307 | 6.964281 | 6.910415 | 7.003529 | 6.983161 | 6.974363 | 7.043452 | 6.939253 | 6.98831 | 6.91065 | 8.350034 | 7.382284 | 7.300735 | 7.30439 | 7.785113 | 7.321004 | 7.325001 | 9.403349 | 7.298425 | 7.495832 | 7.86525 | 7.487628 | 7.528857 | 7.657393 | 7.510195 | 9.286267 | 7.225247 | 7.89622 | 7.882157 | 7.895736 | 7.764631 | 7.886143 | 7.981145 | 7.848593 | 7.866019 | 7.821803 | 7.899974 | 7.85886 | 7.910327 | 8.132237 | 8.07512 | 8.013101 | 8.090156 | 7.929945 | 7.853242 | 8.932072 | 9.25461 | 8.081871 | 8.033737 | 7.823791 | 7.726944 | 7.878582 | 7.830606 | 7.878461 | 7.880838 | 8.412342 | 7.443304 | 8.00961 | 7.974067 | 8.248611 | 8.043625 | 8.094024 | 8.097409 | 8.01078 | 8.228728 | 9.3273 | 9.00056 | 9.036677 | 9.154088 | 9.45481 | 8.758509 | 8.763528 | 8.656596 | 8.38026 | 8.437169 | 8.389222 | 8.398948 | 8.445884 | 8.854428 | 8.72204 | 8.508143 | 8.637486 | 8.707839 | 8.502716 | 8.497472 | 8.690714 | 9.198497 |
GHI | 4.215081 | 4.205673 | 4.352842 | 4.303439 | 4.338703 | 4.369363 | 4.13554 | 4.115388 | 4.088186 | 7.487878 | 7.1475 | 6.916914 | 7.08097 | 7.150508 | 7.052956 | 7.061769 | 7.971821 | 8.391133 | 6.889737 | 7.088427 | 7.335072 | 7.401137 | 7.536386 | 7.75915 | 7.696268 | 8.233905 | 7.953249 | 7.666672 | 7.713544 | 7.460795 | 7.519606 | 7.683715 | 7.594292 | 7.910269 | 7.961773 | 7.999784 | 7.830665 | 7.983932 | 8.170864 | 8.439053 | 8.309834 | 8.276048 | 8.415485 | 8.459459 | 8.565166 | 7.001095 | 6.891004 | 7.291339 | 7.817413 | 7.107717 | 7.121167 | 7.118648 | 7.291354 | 7.451692 | 7.523231 | 7.593439 | 7.461174 | 7.557248 | 7.521386 | 8.83043 | 7.309711 | 7.998509 | 8.077515 | 8.349378 | 8.373889 | 8.337172 | 8.612138 | 8.461116 | 8.590288 | 8.335542 | 8.460844 | 8.399891 | 8.346152 | 8.502693 | 8.569057 | 8.609424 | 8.52866 | 8.456807 | 8.53165 | 9.239362 | 7.587701 | 9.041251 | 7.679485 | 7.829651 | 7.60095 | 7.734413 | 7.697742 | 7.590675 | 7.672729 | 8.188152 | 7.984101 | 8.077937 | 8.156973 | 8.125922 | 7.893885 | 8.029476 | 8.149572 | 7.947239 | 8.130045 | 9.132759 | 9.030305 | 9.085874 | 8.939794 | 9.294367 | 8.435759 | 8.714246 | 8.820995 | 8.90232 | 9.13037 | 9.21427 | 9.35914 | 9.45922 | 9.801244 | 9.956006 | 9.939951 | 9.855377 | 9.961893 | 10.81999 | 9.625897 | 10.23691 | 10.11735 |
JKL | 6.985512 | 6.771179 | 6.420013 | 6.599174 | 6.921434 | 6.692304 | 6.648354 | 6.672106 | 6.83702 | 6.375073 | 6.451194 | 6.697211 | 6.911699 | 6.940217 | 6.850909 | 6.932908 | 6.869187 | 6.865522 | 6.926739 | 6.955289 | 6.992228 | 7.020785 | 7.100226 | 7.138665 | 7.185774 | 7.116879 | 7.15579 | 7.075233 | 7.081223 | 6.539243 | 6.303909 | 6.655766 | 6.858507 | 6.843406 | 6.76681 | 6.882103 | 7.503482 | 7.090046 | 7.153272 | 6.705873 | 6.986562 | 6.932012 | 7.243966 | 7.130281 | 7.210777 | 7.278994 | 7.388262 | 7.418765 | 7.342044 | 7.379343 | 7.393087 | 7.333223 | 7.440471 | 7.448555 | 7.523805 | 7.37266 | 7.388847 | 7.516759 | 7.34294 | 7.392543 | 7.370179 | 7.826197 | 7.801821 | 7.898813 | 7.86241 | 8.172781 | 7.747136 | 7.957314 | 7.853387 | 7.759688 | 7.855832 | 7.866072 | 9.086322 | 7.604269 | 7.484297 | 7.619321 | 7.682413 | 9.237487 | 7.626125 | 7.639379 | 7.61254 | 7.551986 | 7.735046 | 7.649145 | 7.605315 | 7.689857 | 7.645417 | 7.776051 | 7.76002 | 7.76519 | 7.563851 | 7.671823 | 7.831358 | 7.850886 | 7.546145 | 7.68857 | 7.790866 | 7.689947 | 7.923901 | 8.932606 | 8.746556 | 8.858991 | 8.784737 | 8.662896 | 8.571929 | 8.811523 | 8.724541 | 8.834073 | 8.790575 | 8.897497 | 8.74917 | 8.999323 | 8.906557 | 8.989048 | 8.846009 | 9.052123 | 9.145074 | 8.756013 | 8.850691 | 8.801747 | 8.743147 |
Solved! Go to Solution.
Hi @Anonymous
Based on your needs, I have created the following table.
First, you should create a measure like this:
Measure =
VAR select_company = SELECTEDVALUE('Table'[Company])
VAR max_value = MAXX(FILTER(ALL('Table'),'Table'[Company]=select_company),'Table'[CPU])
RETURN
SWITCH(TRUE(),SELECTEDVALUE('Table'[CPU])=max_value,"blue")
Then click the background color conditional formating:
Result:
Best Regards,
Jayleny
If this post helps, then please consider Accept it as the solution to help the other members find it more quickly.
Hi @Anonymous
Based on your needs, I have created the following table.
First, you should create a measure like this:
Measure =
VAR select_company = SELECTEDVALUE('Table'[Company])
VAR max_value = MAXX(FILTER(ALL('Table'),'Table'[Company]=select_company),'Table'[CPU])
RETURN
SWITCH(TRUE(),SELECTEDVALUE('Table'[CPU])=max_value,"blue")
Then click the background color conditional formating:
Result:
Best Regards,
Jayleny
If this post helps, then please consider Accept it as the solution to help the other members find it more quickly.
Try this measure
HighlightColor =
VAR CurrentValue = [AvgCPU]
VAR MaxValue = CALCULATE(MAX([AvgCPU]), ALLEXCEPT('YourTable', 'YourTable'[Row Labels]))
RETURN
IF(CurrentValue = MaxValue, 1, 0)
Join the Fabric FabCon Global Hackathon—running virtually through Nov 3. Open to all skill levels. $10,000 in prizes!
Check out the October 2025 Power BI update to learn about new features.