Advance your Data & AI career with 50 days of live learning, dataviz contests, hands-on challenges, study groups & certifications and more!
Get registeredGet Fabric Certified for FREE during Fabric Data Days. Don't miss your chance! Request now
Hello,
I would like to concatenante Item in a new column (Item Final) per Category (group by) and without duplicates
Input :
| Field1 | Field2 | Category | Item |
| Test1 | MUL | A | |
| Group1 | Test1 | NGA | |
| Test1 | NIMI | ||
| Test1 | NIMI | A | |
| Test1 | NIMI | B | |
| Test1 | NIMI | A |
Output :
| Field1 | Field2 | Category | Item | Item Final |
| Test1 | MUL | A | A | |
| Group1 | Test1 | NGA | ||
| Test1 | NIMI | A-B | ||
| Test1 | NIMI | A | A-B | |
| Test1 | NIMI | B | A-B | |
| Test1 | NIMI | A | A-B |
For exemple for each Category= NIMI the Item Final should be equal to the concatentation of item value for NIMI
Thanks for your help,
Solved! Go to Solution.
Hi @Anonymous ,
You could create a column as below:-
Column =
VAR cat_ = 'Table'[Category]
RETURN
CONCATENATEX (
CALCULATETABLE (
DISTINCT ('Table'[Item]),
FILTER ( 'Table', 'Table'[Category] = cat_ && 'Table'[Item] <> BLANK())
),
'Table'[Item],
","
)
Output:-
Best Regards,
Samarth
If this post helps, please consider accepting it as the solution to help the other members find it more quickly.
Appreciate your Kudos!!
Connect on Linkedin
Hi @Anonymous ,
You could create a column as below:-
Column =
VAR cat_ = 'Table'[Category]
RETURN
CONCATENATEX (
CALCULATETABLE (
DISTINCT ('Table'[Item]),
FILTER ( 'Table', 'Table'[Category] = cat_ && 'Table'[Item] <> BLANK())
),
'Table'[Item],
","
)
Output:-
Best Regards,
Samarth
If this post helps, please consider accepting it as the solution to help the other members find it more quickly.
Appreciate your Kudos!!
Connect on Linkedin
Check out the November 2025 Power BI update to learn about new features.
Advance your Data & AI career with 50 days of live learning, contests, hands-on challenges, study groups & certifications and more!
| User | Count |
|---|---|
| 97 | |
| 73 | |
| 50 | |
| 48 | |
| 45 |